首页> 外文期刊>Nano Energy >Synthesis of WO 3@ZnWO 4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting
【24h】

Synthesis of WO 3@ZnWO 4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting

机译:WO 3 @ZNWO 4 @ ZnO-ZnO分层纳米术阵列高效光电化学水 分裂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

AbstractHierarchical heterostructures with large surface areas and multiple interfaces as photoanode materials, are holding great promise for photoelectrochemical (PEC) water splitting toward efficient solar energy utilization. In this work, the cactus-like WO3@ZnWO4@ZnO-ZnO (i.e.W@WZ@Z-Z) arrays compromising the first-order W@WZ@Z core-shell nanosheets and the second-order ZnO nanosheets, have been fabricated by combining atomic layer deposition (ALD) technique and hydrothermal process. The modification of ZnO nanosheets on the surface of WO3and the simultaneous formation of ZnWO4in-between buffer layer have endowed the photoanode a drastic enhancement in both ultraviolet light absorption and charge separationviathe favorable band alignment at the WO3-ZnWO4-ZnO interfaces. Particularly, the W@WZ@Z-Z nanocactus (NC) array photoanode with a 30nm ZnO layer on WO3precisely controlled by ALD, exhibited around 3.8 times higher photocurrent density (~ 1.57mA/cm2) at 1.23Vvs.RHE than pristine WO3photoanode (~ 0.41mA/cm2), with little loss after long-term continuous illumination as well. Overall, the novel combination of WO3with ZnO and the ZnWO4buffer layer, and construction of hierarchical heterostructures, along with the resulted improvement in light absorption and charge separation which have b
机译:<![cdata [ 抽象 具有大表面区域的分层异质结构和作为光处理材料的多个接口,对光电化学(PEC)水分解具有巨大的通向高效的太阳能利用。在这项工作中,仙人掌样WO 3 @znwo 4 @ zno-zno( ie w @ w_ wz @ zz)阵列通过组合原子层沉积来制造( ALD)技术和水热过程。在WO 3 以及ZnWO 4 的同时形成在紫外线光吸收和电荷分离中赋予了光电码,通过斜体>斜体>在WO 3中的有利带对准 -znwo 4 -zno接口。特别是,WO-WZ ZZ纳米术(NC)阵列与WO 3 精确控制的30nm ZnO层阵列阵列PhotoDanode展出了较高的光电流密度大约3.8倍(〜1.57mA / cm 2 )在1.23v 与斜体> vs。 rhe比原始wo 3 PhotoNode(〜0.41mA / cm 2 ),长期连续照明后几乎没有损失。总体而言,WO 3 用ZnO和ZnWO 4 缓冲层,缓冲层构建分层异质结构,随着具有B的光吸收和电荷分离所产生的改善

著录项

  • 来源
    《Nano Energy》 |2017年第2017期|共9页
  • 作者单位

    State Key Laboratory of ASIC and System Department of Electronic Engineering Shanghai Institute of Intelligent Electronics &

    Systems School of Microelectronics Fudan University;

    Department of Mechanical Engineering School of Engineering The University of Tokyo;

    State Key Laboratory of ASIC and System Department of Electronic Engineering Shanghai Institute of Intelligent Electronics &

    Systems School of Microelectronics Fudan University;

    State Key Laboratory of ASIC and System Department of Electronic Engineering Shanghai Institute of Intelligent Electronics &

    Systems School of Microelectronics Fudan University;

    Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChEM Fudan University;

    State Key Laboratory of ASIC and System Department of Electronic Engineering Shanghai Institute of Intelligent Electronics &

    Systems School of Microelectronics Fudan University;

    State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University;

    State Key Laboratory of ASIC and System Department of Electronic Engineering Shanghai Institute of Intelligent Electronics &

    Systems School of Microelectronics Fudan University;

    State Key Laboratory of ASIC and System Department of Electronic Engineering Shanghai Institute of Intelligent Electronics &

    Systems School of Microelectronics Fudan University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    ALD; WO3; ZnWO4; Nanocactus; PEC water splitting; FDTD;

    机译:ald;wo3;znwo4;纳米乳酸;pec水分裂;fdtd;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号