...
首页> 外文期刊>Nano Energy >0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering]]>
【24h】

0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering]]>

机译:<![CDATA [CDATA [同时优化BI 0.5 SB 1.5 TE 3 TWIN边界工程的热电合金]]>

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract The strong interdependence between the Seebeck coefficient, the electrical and thermal conductivity makes it difficult to obtain a high thermoelectric figure of merit, ZT. It is of critical significance to design a novel structure that manages to decouple these parameters. Here, we combine a liquid state manipulation method for solidified Bi0.5Sb1.5Te3 alloy with subsequent melt spinning, ball milling, and spark plasma sintering processes, to construct dedicated microstructures containing plenty of 60° twin boundaries. These twin boundaries firstly scatter the very low-energy carriers and lead to an enhancement of the Seebeck coefficient. Secondly, they provide a considerable high carrier mobility, compensating the negative effect of the reduced hole concentration on the electrical conductivity. Thirdly, both experimental and calculated results demonstrate that the twin-boundary scattering dominates the conspicuous decrease of the lattice thermal conductivity. Consequently, the highest ZT value of 1.42 is achieved at 348K, which is 27% higher than that of the sample with less twin boundary treated without liquid state manipulation. The average ZT value from 300K to 400K reaches 1.34. Our particular sample processing methods enabling the twin-dominant microstructure is an efficient avenue to simultaneously optimize the thermoelectric parameters. 展开▼
机译:<![cdata [ 抽象 塞贝克系数之间的强相互依赖性,电力和导热率使得难以获得高温的优点, ZT 。设计一种设法解耦这些参数的新型结构是重要的重要意义。在这里,我们结合了凝固的BI 0.5 SB 1.5 TE 3 合金,随后的熔体纺丝,球磨和火花等离子体烧结过程,构建含有大量60°双界限的专用微结构。这些双界首先散射非常低能量的载体并导致塞贝克系数的增强。其次,它们提供相当大的高载流动性,补偿降低孔浓度对电导率的负效应。第三,两种实验和计算结果都表明,双边界散射主导晶格导热率的显着降低。因此,最高的 Zt 值为1.42:348 k,其比样品高出27%,少于双边界在没有液态操纵的情况下治疗。平均 zt 从300 k到400 k达到1.34。我们的特殊样品处理方法实现双主显微组织是一种有效的途径,可以同时优化热电参数。

著录项

  • 来源
    《Nano Energy》 |2017年第2017期|共11页
  • 作者单位

    Liquid/Solid Metal Processing Institute School of Materials Science &

    Engineering Hefei University of Technology;

    Materials Characterization and Preparation Center South University of Science and Technology of China;

    Max-Planck Institut für Eisenforschung GmbH (MPIE);

    I. Physikalisches Institut (IA) RWTH Aachen;

    I. Physikalisches Institut (IA) RWTH Aachen;

    Max-Planck Institut für Eisenforschung GmbH (MPIE);

    Liquid/Solid Metal Processing Institute School of Materials Science &

    Engineering Hefei University of Technology;

    State Key Laboratory of Heavy Oil Processing and Department of Materials Science and Engineering China University of Petroleum;

    Liquid/Solid Metal Processing Institute School of Materials Science &

    Engineering Hefei University of Technology;

    Max-Planck Institut für Eisenforschung GmbH (MPIE);

    Department of Physics South University of Science and Technology of China;

    Department of Physics South University of Science and Technology of China;

    I. Physikalisches Institut (IA) RWTH Aachen;

    Liquid/Solid Metal Processing Institute School of Materials Science &

    Engineering Hefei University of Technology;

    Liquid/Solid Metal Processing Institute School of Materials Science &

    Engineering Hefei University of Technology;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Electrical transport property; Thermal transport property; Liquid state manipulation; Twin boundary; Simultaneous optimization;

    机译:电气运输性能;热运输性质;液态操纵;双边界;同时优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号