首页> 外文期刊>Nano Energy >An electrical super-insulator prototype of 1D gas-solid Al2O3 nanocell
【24h】

An electrical super-insulator prototype of 1D gas-solid Al2O3 nanocell

机译:电气电气原型为1D气体固体AL 2 O 3 NANOCELL

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract High electric breakdown strength of insulating materials is essential to improving the reliability of the electricity grid, reducing the size of electric devices, saving energy, protecting the environment, and reducing costs. Traditionally, dielectric breakdown strength is increased by exploiting its dependence on the thickness of the dielectric material, based on the electron impact ionization and avalanche theory by Townsend (1900) and Seitz (1949) [9]. However, at present there has been little research addressing the role of the transverse dimension (perpendicular to the direction of the electric field) in the avalanche breakdown process, and no results about research in nanoscale. An insulation breakdown prototype of a 1D nanocell was constructed. It consisted of an air-column and Al2O3 solid wall. Based on the analysis and comparison between nanocell geometrical dimensions and avalanche physical dimensions, it was found that the properties of the 1D nanocell diverges from the gas/solid discharge theories of Townsend and Seitz. Along with the I-V results of 1D nanocell by C-AFM (Conductive-Atomic Force Microscope), it was demonstrated that electrical breakdown cannot be caused by electron avalanche in 1D nanocell. The discharge properties of Al2O3 NPT (nano pore template) with nanocells array and when it inserted into the air gap as a barrier were studied to further demonstrate the capability of 1D nanocells on the electrical characteristic of macroscale material. Results showed that the scale effect of nanocells have an obvious role in
机译:<![cdata [ 抽象 绝缘材料的高击穿强度对于提高电网的可靠性至关重要,减少电气设备的尺寸,节约能源,保护环境,降低成本。传统上,通过通过Townsend(1900)和Seitz(1949)[9]的电子碰撞电离和雪崩理论,通过利用其对介电材料厚度的依赖来增加介电击穿强度。然而,目前已经几乎没有研究横向尺寸(垂直于电场方向)在雪崩击穿过程中的作用,并且没有关于纳米级研究的结果。构建了1D纳米细胞的绝缘击穿原型。它包括一个空中柱和Al 2 O 3 实心墙。基于纳米蜂窝几何尺寸和雪崩实际尺寸之间的分析和比较,发现1D纳米细胞的性能来自Townsend和Seitz的气/固体放电理论。随着C-AFM(导电原子力显微镜)的1D纳米细胞的I-V纳米I-V结果,证明了电击穿不能在1D纳米细胞中引起电子雪崩。 Al 2> 2 o 3 npt(纳米孔模板),纳米细阵列和当研究作为屏障插入空气间隙时,进一步证明了1D纳米细胞对宏观材料电气特性的能力。结果表明,纳米细胞的规模效应具有明显的作用

著录项

  • 来源
    《Nano Energy》 |2017年第2017期|共6页
  • 作者单位

    College of Materials Science and Engineering Qingdao University of Science and Technology;

    State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University;

    State Key Laboratory of Control &

    Simulation of Power System &

    Generation Equipment Tsinghua University;

    State Key Laboratory of Control &

    Simulation of Power System &

    Generation Equipment Tsinghua University;

    State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University;

    College of Materials Science and Engineering Qingdao University of Science and Technology;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Nanostructure; Transverse confinement; Electron avalanche; Discharge;

    机译:纳米结构;横向限制;电子雪崩;放电;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号