首页> 外文期刊>Nano Energy >In-situ stretching strain-driven high piezoelectricity and enhanced electromechanical energy-harvesting performance of a ZnO nanorod-array structure
【24h】

In-situ stretching strain-driven high piezoelectricity and enhanced electromechanical energy-harvesting performance of a ZnO nanorod-array structure

机译:原位拉伸应变驱动的高压电和增强ZnO纳米码阵列结构的机电能量收集性能

获取原文
获取原文并翻译 | 示例
       

摘要

Although strain engineering has been extensively recognized as a critical pathway in controlling the properties of inorganic materials, there have been very limited reports on the external strain-dependent modulation of piezoelectricity in flexible systems. Herein, we introduce a technical way of imposing extra stress during the deposition of the ZnO nanorods by using the stretching mode of a polymer substrate, specifically for the purpose of enhancing piezoelectricity and bending-driven energy harvesting performance. Depending on the level of stretching up to 4.87% strain, the induced stress of the nanorod structure was modulated after the substrate-releasing step. The 4.87%-stretching mode resulted in an effective piezoelectric coefficient of 33.3 p.m./V corresponding to an enhancement by similar to 270% compared to the unstrained case. The resultant piezoelectric energy harvester demonstrated similar to 3.43 V output voltage and similar to 226 nA output current for the 4.87%-strained sample, which means respective increments by similar to 90% and similar to 85% with the application of in-situ strain. The origin of the improvements is chased by estimating the changes in lattice constants and spontaneous polarization, which are dependent on the level of in-situ strain.
机译:尽管应变工程被广泛认识为控制无机材料性能的关键途径,但是关于柔性系统中的压电性的外部应变依赖性调制存在非常有限。在此,我们通过使用聚合物基板的拉伸模式在ZnO纳米棒沉积期间引入施加额外应力的技术方法,具体是为了提高压电和弯曲驱动的能量收集性能。取决于高达4.87%应变的拉伸水平,在释放底物释放步骤之后调节纳米棒结构的诱导应力。 4.87%伸出模式导致有效的压电系数为33.3下午33.3分钟/伏对应于与未经测试的情况相比的增强。所得的压电能量收割机相似至3.43V输出电压,类似于4.87%-Strow样品的226个Na输出电流,这意味着与原位应变的应用相似的90%,类似于85%。通过估计晶格常数和自发极化的变化来追加改进的起源,这取决于原位应变水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号