首页> 外文期刊>Nano Energy >Inverted perovskite solar cells employing doped NiO hole transport layers: A review
【24h】

Inverted perovskite solar cells employing doped NiO hole transport layers: A review

机译:倒置钙钛矿太阳能电池采用掺杂的NIO孔运输层:综述

获取原文
获取原文并翻译 | 示例
           

摘要

Perovskite solar cells (PSCs) have shown unprecedented efficiency progress from 3.8% in 2009 to 24.2% in 2019. Up to now, the highest device efficiencies were recently achieved by employing n-type SnO2 on the transparent front electrode with conventional structure (n-i-p structure), while TiO2 remains the most used electron transport layer in PSCs. However, the comparably large J-V hysteresis in planar PSCs and the high temperature process required in mesoporous TiO2 structures severely limit the further commercial application. Therefore, inverted PSCs (p-i-n structure) employing p-type NiOx as the hole transport layer (HTL) on the front electrode have attracted massive attention in recent years. This is mainly due to their lower processing temperature for large scale and flexible devices, negligible J - V hysteresis effects, and furthermore, better stability as compared to organic HTLs. In spite of all these merits of NiOx based HTLs, the reported efficiencies of inverted PSCs are still lower than that of conventional PSCs. The main reasons can be assigned to limitations arising from the low conductivity and a mismatched band position of NiOx. Doping has been considered to be an effective way to adjust the electrical and optical properties of semiconductor oxides in a large extent and has already shown promising results in improving the photovoltaic performance of NiOx based inverted PSCs. In this review, recent investigations about the influence of doping on the structural, electrical, and optical properties of NiOx HTLs are summarized. We also discuss the advantages and current challenges of utilizing NiOx HTLs in PSCs and attempt to give prognoses on future progress exploiting them in high-efficiency inverted PSCs.
机译:Perovskite太阳能电池(PSC)从2009年的3.8%显示了前所未有的效率进展于2019年的24.2%。到目前为止,最近通过用常规结构在透明前电极上采用n型SnO2来实现最高的装置效率(NIP结构),而TiO2仍然是PSC中最常用的电子传输层。然而,平面PSC中的相对大的J-V滞后和中孔TiO2结构所需的高温过程严重限制了进一步的商业应用。因此,近年来,使用P型NiOx作为前电极上的空穴传输层(HTL)的倒置的PSC(P-I-N结构)引起了大规模的关注。这主要是由于其较低的大规模和柔性器件的加工温度,忽略不计的J - V滞后效应,而且与有机HTL相比,较好的稳定性。尽管基于NIOx的HTLS所有这些优点,但倒置PSC的报告效率仍低于传统PSC的效率。可以将主要原因分配给来自低电导率和NiOx的不匹配带位置产生的限制。掺杂被认为是在很大程度上在很大程度上调节半导体氧化物的电气和光学性质的有效方法,并且已经明显导致提高基于NiOx的倒置PSC的光伏性能。在本综述中,总结了关于掺杂对NiOx HTLS结构,电气和光学性质的影响的最近研究。我们还讨论了利用PSC中使用NIOX HTL的优势和目前挑战,并试图对未来进展中的预后,在高效倒置的PSC中利用它们。

著录项

  • 来源
    《Nano Energy》 |2019年第2019期|共14页
  • 作者单位

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Jilin Univ Coll Elect Sci &

    Engn State Key Lab Integrated Optoelect Changchun 130012 Jilin Peoples R China;

    Univ Grenoble Alpes CEA CNRS INAC SyMMES STEP F-38000 Grenoble France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Inverted perovskite solar cells; NiOx hole transport layer; Extrinsic doping strategies; Properties modulation;

    机译:倒置钙钛矿太阳能电池;Niox孔输送层;外在掺杂策略;属性调制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号