首页> 外文期刊>Nano Energy >Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples
【24h】

Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples

机译:通过来自有机离子氧化还原耦合的非辐射能量转移机制利用低强度室内灯的高效发电装置

获取原文
获取原文并翻译 | 示例
       

摘要

Low intensity indoor lightings are often wasted and unutilized, when they could be harvested to produce electrical energy. Unfortunately there is currently no solar cells which could harvest low light intensity efficiently. Therefore, this work reports the synthesis of energy transfer redox couples (ETRCs) that aid in the harvesting of low light intensity for photoelectrochemical cells. Such ETRCs are excellent choices as electrolytes in solid-state photoelectrochemical cells owing to their multifunctional attributes like faster dye regeneration, more efficient light absorption and faster energy transfer kinetics. Electrochemical characterizations reveal that Forster Resonance Energy Transfer (FRET) is occurring between ERTC electrolyte (donor) and the N719 dye (acceptor). Photovoltaic efficiency of the reported device is 28% higher than the conventional silicon solar cells, tested under low light intensity. Additionally, the idiosyncratic design of this device makes it versatile to be used in indoor conditions or can be mounted at a wide range of incidence angle with an ability to retain a high efficiency of 21.08%. Superior ionic-conductivity imparted by the single-component electrolyte provides a platform for future directions in energy harvesting and storage.
机译:当它们可以收获以产生电能时,低强度室内灯经常浪费和联合不利。遗憾的是,目前没有太阳能电池,可以有效地收获低光强度。因此,这项工作报告了能量转移氧化还原耦合(ETRC)的合成,其有助于收获光电子细胞的低光强度。这种ETRC在固态光电化细胞中的电解质是优异的选择,由于它们的多功能属性,如更快的染料再生,更有效的光吸收和更快的能量转移动力学。电化学表征揭示了埃斯特共振能量转移(FRET)在ERTC电解质(供体)和N719染料(受体)之间发生。报告的装置的光伏效率比传统的硅太阳能电池高28%,在低光强度下测试。另外,该装置的特殊设计使其在室内条件下使用,或者可以在宽范围内安装,具有保留21.08%的高效率的能力。单组分电解质赋予的优异离子导电性为未来的能量收集和储存方向提供平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号