首页> 外文期刊>Molecular pharmaceutics >Molecular Dynamics Simulations Provide Insight into the Loading Efficiency of Proresolving Lipid Mediators Resolvin D1 and D2 in Cell Membrane-Derived Nanovesicles
【24h】

Molecular Dynamics Simulations Provide Insight into the Loading Efficiency of Proresolving Lipid Mediators Resolvin D1 and D2 in Cell Membrane-Derived Nanovesicles

机译:分子动力学模拟提供了对脂质介质溶解素D1和D2在细胞膜衍生的纳米粒子中的脂质介质D1和D2的加载效率的洞察

获取原文
获取原文并翻译 | 示例
           

摘要

Resolvins D1 and D2 (RvDs) are structural isomers and metabolites of docosahexaenoic acid, an omega-3 fatty acid, enzymatically produced in our body in response to acute inflammation or microbial invasion. Resolvins have been shown to play an essential role in the resolution of inflammation, tissue repair, and return to homeostasis and thus are actively pursued as potential therapeutics in treating inflammatory disorders and infectious diseases. However, effective in vivo delivery of RvDs continues to be a challenging task. Recent studies demonstrated that RvD1 or RvD2 loaded in cell membrane-derived nanovesides significantly increased therapeutic efficacy in treating murine peritonitis and ischemic stroke, respectively. The mechanistic details of how the subtle structural difference between RvD1 and RvD2 alters their molecular interactions with the membrane lipids of the nanovesides and thus affects the loading efficiency remain unknown. Here, we report the encapsulation profiles of the neutral and ionized species of both RvD1 and RvD2 determined with the cell membrane-derived nanovesides at pH values 5.4 and 7.4, respectively. Also, we performed microsecond time-scale all-atom molecular dynamics (MD) simulations in explicit water to elucidate the molecular interactions of both neutral and ionized species of RvD1 and RvD2 with the lipid bilayer using a model membrane system, containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol. We found that the differences in the position and chirality of hydroxyl groups in RvD1 and RvD2 affected their location, orientation, and conformations within the bilayer. Surprisingly, the deprotonation of their carboxyl group caused their orientation and conformation to change from a fully extended one that is oriented in parallel to the membrane plane to a J-shaped bent conformation that is oriented perpendicular to the bilayer plane. Our studies offer valuable insight into the molecular interactions of RvD1/D2 with the lipid bilayer in atomistic details and provide a mechanistic explanation for the observed differences in the encapsulation profiles of RvD1 and RvD2, which may facilitate the rational design of nanovesicle-based therapeutics for treating inflammatory diseases.
机译:reatvins d1和d2(rvds)是二十二碳六甲酸的结构异构体和代谢物,ω-3脂肪酸,在我们的身体中酶促制作,响应于急性炎症或微生物侵袭。已经证明了腐败素在分辨炎症,组织修复和恢复到稳态中起重要作用,因此被积极地作为治疗炎症性疾病和传染病的潜在治疗方法。但是,有效地在境内交付RVDS继续成为一个具有挑战性的任务。最近的研究表明,在细胞膜衍生的纳米乙酰亚体中加载的RVD1或RVD2分别在治疗小鼠腹膜炎和缺血性卒中方面显着提高了治疗效果。 RVD1和RVD2之间的微妙结构差异如何改变其与纳米乙氧乙烷膜的膜脂质的分子相互作用,从而影响负载效率仍然未知。在这里,我们报告了在pH值5.4和7.4的细胞膜衍生的纳米乙酰体中测定的RVD1和RVD2的中性和离子化物质的封装曲线。此外,我们在明确的水中进行了微秒的时间尺度全原子分子动力学(MD)模拟,以阐明使用模型膜系统与脂质双层的RVD1和RVD2的中性和电离物种的分子相互作用,其中包含1,2- Dimyristoyl-Sn-甘油-3-磷光啉(DMPC)和胆固醇。我们发现,RVD1和RVD2中羟基的位置和手性的差异影响了双层内部的位置,取向和构象。令人惊讶的是,它们的羧基的去质子化引起它们的取向和构象,以从完全伸展的形式改变,其与膜平面平行定向到垂直于双层平面的J形弯曲构象。我们的研究提供了对RVD1 / D2与原子细节的脂质双层的分子相互作用的有价值的见解,并为rvd1和Rvd2的封装型材的观察差提供了机械解释,这可以促进基于纳米粒度的治疗剂的合理设计治疗炎症性疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号