...
首页> 外文期刊>Molecular biology of the cell >Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis
【24h】

Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis

机译:裂变酵母TRP通道PKD2P定位于切割沟槽并调节细胞因子期间的细胞分离

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Force plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing transient receptor potential channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with autosomal polycystic kidney disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures, and hyperactivated mitogen-activated protein kinase signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with misregulated turgor pressure. Finally, the pkd2 mutant exhibits strong genetic interactions with two mutants of the septation initiation network pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.
机译:在细胞分裂的最后阶段,力在分离子细胞期间在分离子细胞中发挥核心作用。然而,Cytokinesis期间的力传感机制仍然未知。在这里,我们发现PKD2P,一种推定的力传感的瞬态受体电位通道,定位于裂解酵母的细胞因子期间的切割沟槽,Schizosaccharomyces Pombe。 PKD2P,其人类同源物与常染色体多囊肾疾病有关,是一种必要的蛋白质,其定位取决于收缩环和分泌途径。我们鉴定并表征了一种新型PKD2突变体PKD2-81KD。 PKD2突变体细胞显示出渗透胁迫的迹象,包括临时收缩,腹股沟骨骼结构的暂停转换,以及多动催化丝裂解蛋白激酶信号传导。在细胞因子期间,虽然收缩环在PKD2突变体中收缩的比野生型电池更快(50%更高),但突变体中的细胞分离较慢并且通常不完全。这些细胞因子缺陷也与误操作的Turgor压力一致。最后,PKD2突变体表现出与荚膜引发网络途径的两个突变体的强遗传相互作用,这是一种对细胞因子至关重要的信号级联。我们提出pKD2P调节渗透性稳态,并且是潜在的细胞因子的新型调节因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号