【24h】

Orthogonal gas sensor arrays by chemoresistive material design

机译:由化学材料设计的正交气体传感器阵列

获取原文
获取原文并翻译 | 示例
           

摘要

Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated. Therefore, arrays of (2-5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R-2) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R-2 of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia better with a R-2 of 0.68Conventional arrays (red) with weakly-selective sensors span a significantly smaller volume in the analyte space than arrays containing distinctly-selective sensors (orthogonal array, green). Orthogonal arrays feature better accuracy and precision than conventional arrays in mixtures of ammonia, acetone and ethanol.
机译:气体传感器阵列往往缺乏对不同分析物和对干扰的鲁棒性的歧视权,这限制了他们在研究实验室之外的成功。这主要是由于组成传感器的广泛敏感(因此弱选择性)性质。这里,研究了通过选择性传感器设计对阵列精度和精度进行正交性的影响。因此,通过系统地改变阵列尺寸和组成来形成(2-5)选择性和非选择性传感器的阵列。它们的性能通过60种随机组合的PPB在PPB下的氨,丙酮和乙醇组合至低PPM浓度。用氨的氨的测定的高系数(R-2)的最佳分析物预测为0.96,对于丙酮为0.99,乙醇为0.88,用阵列具有高度的正交性。这是通过使用明显的选择性传感器(Si:Moo3用于氨和Si:WO3与Si:SnO2)来实现,从而提高回归系数的辨别力和稳定性。另一方面,具有共线传感器的阵列(PD:SnO2,Pt:SnO2和Si2和Si:SnO2)几乎不改善氨,丙酮和乙醇的0.01,0.86和0.28的气体预测。有时,它们甚至表现出比单个传感器的测定系数较低,因为Si:MoO3传感器单独使用0.68个转化阵列(红色)的R-2更好地预测氨,弱选择性传感器跨越分析物空间中的显着较小的体积而不是含有阵列明显选择的传感器(正交阵列,绿色)。正交阵列具有比氨,丙酮和乙醇混合物中的传统阵列更好的精度和精确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号