...
首页> 外文期刊>Metabolic engineering >Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity
【24h】

Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity

机译:蓝藻痈肿瘤分析揭示了酶分区化对细胞代谢和代谢网络刚度的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cyanobacterial carboxysomes encapsulate carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Genetic deletion of the major structural proteins encoded within the ccm operon in Synechococcus sp. PCC 7002 (Delta ccmKLMN) disrupts carboxysome formation and significantly affects cellular physiology. Here we employed both metabolite pool size analysis and isotopically nonstationary metabolic flux analysis (INST-MFA) to examine metabolic regulation in cells lacking carboxysomes. Under high CO2 environments (1%), the Delta ccmKLMN mutant could recover growth and had a similar central flux distribution as the control strain, with the exceptions of moderately decreased photosynthesis and elevated biomass protein content and photorespiration activity. Metabolite analyses indicated that the Delta ccmKLMN strain had significantly larger pool sizes of pyruvate ( > 18 folds), UDPG (uridine diphosphate glucose), and aspartate as well as higher levels of secreted organic acids (e.g., malate and succinate). These results suggest that the Delta ccmKLMN mutant is able to largely maintain a fluxome similar to the control strain by changing in intracellular metabolite concentrations and metabolite overflows under optimal growth conditions. When CO2 was insufficient (0.2%), provision of acetate moderately promoted mutant growth. Interestingly, the removal of microcompartments may loosen the flux network and promote RuBisCO side-reactions, facilitating redirection of central metabolites to competing pathways (i.e., pyruvate to heterologous lactate production). This study provides important insights into metabolic regulation via enzyme compartmentation and cyanobacterial compensatory responses.
机译:蓝藻痈蛋白酶包封碳酸酐酶和核糖糖糖-1,5-双磷酸羧酶/氧气酶(Rubisco)。在SyneChocccus SP中CCM操纵子中编码的主要结构蛋白的遗传缺失。 PCC 7002(Delta CCMKLMN)扰乱肉嵌组形成,显着影响细胞生理学。在这里,我们使用代谢物池尺寸分析和同位素不存在的代谢通量分析(Inst-MFA),以检查缺乏羧植物组织的细胞中的代谢调节。在高二氧化碳环境(1%)下,Delta CCMKLMN突变体可以恢复生长并且具有与对照菌株相似的中央助熔剂分布,其具有中度降低的光合作用和升高的生物质蛋白质含量和光素活性。代谢物分析表明,Delta CCMKLMN菌株具有显着更大的吡合他素(> 18倍),UDPG(尿苷二磷酸葡萄糖)和天冬氨酸水平的池尺寸,以及更高水平的分泌的有机酸(例如,苹果酸盐和琥珀酸)。这些结果表明Delta CCMKLMN突变体能够通过在细胞内代谢物浓度和最佳生长条件下溢出中的代谢物溢出来大致维持与对照菌株类似的脉络膜。当二氧化碳不足(0.2%)时,适度地提供醋酸盐促进突变体生长。有趣的是,可以松开微量组分,可以松开助焊剂网络并促进Rubisco副反应,促进中央代谢物的重定向到竞争途径(即,丙酮酸与异源乳酸生产)。本研究通过酶分区和蓝藻补偿反应提供了对代谢调节的重要见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号