首页> 外文期刊>Metabolic engineering >Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis
【24h】

Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis

机译:揭示分枝链氨基酸转氨酶在酿酒酵母中异丁醇生物合成中的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract Isobutanol and other branched-chain higher alcohols (BCHAs) are promising advanced biofuels derived from the degradation of branched-chain amino acids (BCAAs). The yeast Saccharomyces cerevisiae is a particularly attractive host for the production of BCHAs due to its high tolerance to alcohols and prevalent use in the bioethanol industry. Degradation of BCAAs begins with transamination reactions, catalyzed by branched-chain amino acid transaminases (BCATs) located in the mitochondria (Bat1p) and cytosol (Bat2p). However, the roles that these transaminases play in isobutanol production remain poorly understood and obscured by conflicting reports in the literature. In this work, we elucidate the influence of BCATs on isobutanol production in two genetic backgrounds (CEN.PK2-1C and BY4741). In the process, we uncover and characterize two competing isobutanol pathways, which can be manipulated by overexpressing or deleting BAT1 or BAT2 , and adding or removing valine from the fermentation media. We show that deletion of BAT1 alone increases isobutanol production by 14.2-fold over wild type strains in media lacking valine, and examine how interactions between valine and the regulatory protein Ilv6p affect isobutanol production. Compartmentalizing the five-gene isobutanol biosynthetic pathway in mitochondria of BAT1 deletion strains results in an additional 2.1-fold increase in isobutanol production in the absence of valine. While valine inhibits isobutanol production, it boosts 2-methyl-1-butanol production. This work clarifies the role of transamination activity in BCHA biosynthesis, and develops valuable strategies and strains for future optimization of isobutanol production. Highlights ? Two endogenous competing pathways for isobutanol production are identified. ? Deletion of BAT1 increases isobutanol production 14.2-fold in media lacking valine. ? Evidence for the role of Ilv6p in acetolactate synthase inhibition by valine. ? Intracellular ketoisovalerate transport is identified as a key bottleneck in biosynthesis. ? Evidence for valine selective inhibition of acetolactate synthase is provided.
机译:摘要异丁醇和其他支链高级醇(BCHAS)是前途的高级生物燃料,源自支链氨基酸的降解(BCAAs)。酵母酿酒酵母酿酒酵母是一种特别有吸引力的宿主,用于生产BCHA,因为它具有高含酒的耐受性和生物乙醇行业的普遍使用。 BCAA的降解以分解反应开始,由位于线粒体(BAT1P)和细胞溶溶胶(BAT2P)中的支链氨基酸转基因酶(BCAT)催化。然而,这些转氨酶在异丁醇产量中发挥的作用仍然受到文献中的报告的矛盾的难度理解和模糊不清。在这项工作中,我们阐明了BCATS对两个遗传背景(CEN.PK2-1C和BY4741)的异丁醇生产的影响。在该方法中,我们发现并表征了两种竞争的异丁醇途径,其可以通过过表达或删除BAT1或BAT2来操纵,并从发酵培养基中加入或除去缬氨酸。我们表明,单独的BAT1的缺失将异丁醇产量增加14.2倍,缺乏缬氨酸的培养基中的野生型菌株,并检查缬氨酸和调节蛋白ILV6P之间的相互作用如何影响异丁醇生产。在没有缬氨酸的情况下,在BAT1缺失菌株的线粒体中的五基因异丁醇生物合成途径导致异丁醇产量增加2.1倍。虽然缬氨酸抑制异丁醇生产,但它促进了2-甲基-1-丁醇的生产。这项工作阐明了缩放活性在BCHA生物合成中的作用,并为未来优化异丁醇生产产生了有价值的策略和菌株。强调 ?鉴定了两种内丁醇生产的内源性竞争途径。还BAT1的缺失增加了缺乏缬氨酸的培养基中的异丁醇产量14.2倍。还ILV6P在丙氨酸乙酸盐合酶抑制中的作用的证据。还细胞内酮级转运被鉴定为生物合成中的关键瓶颈。还提供了丙氨酸合酶的缬氨酸选择性抑制的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号