首页> 美国卫生研究院文献>Microbial Cell >Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1
【2h】

Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1

机译:酿酒酵母中的缬氨酸生物合成受线粒体支链氨基酸转氨酶Bat1调控。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In the yeast Saccharomyces cerevisiae, the branched-chain amino acid aminotransferases (BCATs) Bat1 and Bat2 catalyze the conversion of α-ketoisovalerate, α-keto-β-methylvalerate, and α-ketoisokaproate and into valine, isoleucine, and leucine, respectively, as the final step of branched-chain amino acid biosynthesis. Bat1 and Bat2 are homologous proteins that share 77% identity, but Bat1 localizes in the mitochondria and Bat2 in the cytosol. Based on our preliminary finding that only disruption of the BAT1 gene led to slow-growth phenotype, we hypothesized that Bat1 and Bat2 play distinct roles in valine biosynthesis and the regulation of cell growth. In this study, we found that intracellular valine content was dramatically decreased in Δbat1 cells, whereas Δbat2 cells exhibited no changes in the valine level. To further examine the distinct roles of Bat1 and Bat2, we constructed two artificial genes encoding the mitochondrial-targeting signal (MTS)-deleted Bat1 (Bat1-MTS) and the MTS of Bat1-fused Bat2 (Bat2+MTS). Interestingly, Bat2+MTS was relocalized into the mitochondria, because Bat2 localization was changed to the mitochondria by addition of MTS, and could partially restore the valine content and growth in Δbat1Δbat2 cells. These results suggest that the mitochondria are the major site of valine biosynthesis, and mitochondrial BCAT is important for valine biosynthesis in S. cerevisiae.
机译:在酿酒酵母中,Bat1和Bat2支链氨基酸氨基酸转移酶(BCATs)催化α-酮异戊酸,α-酮-β-甲基戊酸和α-酮异戊酸的转化,分别转化为缬氨酸,异亮氨酸和亮氨酸。作为支链氨基酸生物合成的最后一步。 Bat1和Bat2是同源蛋白,具有77%的同一性,但Bat1位于线粒体中,而Bat2位于细胞质中。基于我们的初步发现,即仅破坏BAT1基因会导致缓慢生长的表型,我们假设Bat1和Bat2在缬氨酸生物合成和细胞生长的调节中起不同的作用。在这项研究中,我们发现Δbat1细胞的细胞内缬氨酸含量显着降低,而Δbat2细胞的缬氨酸水平没有变化。为了进一步检查Bat1和Bat2的不同作用,我们构建了两个人工基因,编码缺失线粒体靶向信号(MTS)的Bat1(Bat1-MTS)和与Bat1融合的Bat2(Bat2 + MTS)的MTS。有趣的是,由于通过添加MTS将Bat2定位改变为线粒体,因此Bat2 + MTS重新定位到了线粒体,并且可以部分恢复缬氨酸含量和Δbat1Δbat2细胞的生长。这些结果表明线粒体是缬氨酸生物合成的主要部位,线粒体BCAT对于酿酒酵母中缬氨酸的生物合成很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号