首页> 外文期刊>Materials Characterization >Indentation size effect in tungsten: Quantification of geometrically necessary dislocations underneath the indentations using HR-EBSD
【24h】

Indentation size effect in tungsten: Quantification of geometrically necessary dislocations underneath the indentations using HR-EBSD

机译:钨中的缩进尺寸效应:使用HR-EBSD在压痕下的几何必要位错

获取原文
获取原文并翻译 | 示例
           

摘要

tDuring indentation testing of the low defect density crystalline materials, higher hardness values are found at lower indentation depths, which is referred to as an indentation size effect. The depth-dependence of hardness can be described by the Nix-Gao model, which is based on the concept of Geometrically Necessary Dislocations (GNDs). The underlying dislocation mechanism remains, however, unclear and requires independent measurement of GND density below the indentation. In the present work, the depth-dependency of the GND density is quantified underneath the Berkovich indentations in tungsten via high-resolution electron backscatter diffraction. There a higher GND density is found for lower indentation depths, resulting in a higher Taylor hardness for measured GND density.
机译:在较低的压痕深度处发现低缺陷密度晶体材料的缩进测试,在较低的压痕深度下发现更高的硬度值,这被称为压痕尺寸效应。 硬度的深度依赖性可以由NIX-GAO模型描述,其基于几何必要脱位(GNDS)的概念。 然而,潜在的脱位机制仍然不清楚,并且需要独立测量缩进以下GND密度。 在本作的工作中,通过高分辨率电子反向散射衍射在钨中的Berkovich凹陷下量化GND密度的深度依赖性。 发现较低的压痕深度有更高的GND密度,导致测量的GND密度更高的泰勒硬度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号