首页> 外文期刊>ACS nano >Growth Dynamics for DNA-Guided Nanoparticle Crystallization
【24h】

Growth Dynamics for DNA-Guided Nanoparticle Crystallization

机译:DNA引导的纳米颗粒结晶的生长动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Spherical nucleic acid (SNA) nanostructures assemble into a large variety of well-defined crystalline superlattices via DNA-directed hybridization. Crystallities of SNA with various shapes emerge during the assembly process, which coalesce during coarsening, leading to polycrystalline materials. Here, we investigate the growth dynamics of SNAs into body-centered cubic superlattices and the coalescence of SNA aggregates using a colloidal model formulated from the competition of electrostatic core repulsions and localized DNA hybridization attractions. We find that the growth law of isolated SNA crystallities is well-described by the power law t~(1/2), in agreement with experimental observations. At later times, coalescence slows the growth dynamics considerably and is dependent on the orientational mismatch (misorientation angle) of the coalescing crystallites. Molecular dynamics simulations show that the misorientation angle decreases continually during the coalescence, which is a signature of the grain rotation induced coalescence mechanism. This mechanism is followed by the coarsening of a "neck" that develops at the boundary between the coalescing crystallites. Remarkably, we find faster coalescence dynamics for larger SNAs compared to smaller SNAs due to their enhanced surface diffusion, which more effectively reduces curvature at the boundary of two superlattices. These findings provide fundamental insight into the relationship between nanoparticle surface chemistry and its crystallite growth and coalescence.
机译:球形核酸(SNA)纳米结构通过DNA定向杂交组装成各种各样的明确定义的晶体超晶格。在组装过程中会出现各种形状的SNA结晶,这些结晶在粗化过程中会聚结,从而形成多晶材料。在这里,我们使用由静电核心排斥和局部DNA杂交吸引力的竞争所形成的胶体模型研究SNA进入以人体为中心的立方超晶格的生长动力学以及SNA聚集体的聚结。我们发现,孤立的SNA结晶的生长规律可以很好地描述为幂定律t〜(1/2),与实验结果一致。在以后的时间里,聚结大大降低了生长动力学,并且取决于聚结微晶的取向失配(取向差角)。分子动力学模拟表明,在聚结过程中,取向差角不断减小,这是晶粒旋转诱导聚结机理的标志。该机理之后是在聚结的微晶之间的边界处形成的“颈”的粗化。值得注意的是,由于较小的SNA增强了表面扩散,因此与较小的SNA相比,我们发现它们的合并动力学更快,这可以更有效地减小两个超晶格边界处的曲率。这些发现为纳米颗粒表面化学与其微晶生长和聚结之间的关系提供了基本的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号