...
首页> 外文期刊>ACS nano >A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes
【24h】

A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes

机译:既可作为粘合剂又可作为硅纳米颗粒锂离子电池负极导电添加剂的商业导电聚合物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work describes silicon nanoparticlebased lithium -ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PEDOT:PSS. While enabling the production of well -mixed slurry -cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PEDOT:PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 inkh/g (based on the SiNP mass) and a first, cycle efficiency of 78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mAth/g normalized to Si mass (-75% capacity retention), corresponding to 1542 mAh/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (-4.5 mg/cm2), a high areal capacity of 3 mA.h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.
机译:这项工作描述了基于硅纳米粒子的锂离子电池负极,其中多个非活性电极添加剂(通常是炭黑和惰性聚合物粘合剂)被单个导电粘合剂(在这种情况下为导电聚合物PEDOT:PSS)代替。虽然可以生产出具有高硅含量(最高95 wt%)的混合均匀的浆料浇铸电极,但这种结合消除了众所周知的在重复锂化过程中由于硅与传统无机导电添加剂的物理分离而导致的容量损失/去石化过程。通过使用少量甲酸对PEDOT:PSS进行原位二次掺杂处理,可以制备出电导率高达4.2 S / cm的含80 wt%SiNPs的电极。即使在相对较高的1 mg / cm(2)的面载荷下,该系统也显示出3685 inkh / g(基于SiNP质量)的第一循环锂化能力和78%的第一循环效率。在以1 A / g进行100次重复循环后,该电极仍然能够存储令人印象深刻的1950 mAth / g(标准化为Si质量)(-75%容量保持率),当通过总电极质量进行标准化时相当于1542 mAh / g 。在研究的最大电极厚度(-4.5 mg / cm2)下,获得了3 mA.h / cm(2)的高面积容量。重要的是,这些电极基于可商购的组件,并且通过大规模电极生产所需的标准浆料涂覆方法来生产。因此,这里提出的结果与商业LiB负电极的实现高度相关,该LiB负电极的性能超过了当前基于石墨的负电极系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号