...
首页> 外文期刊>Flow, turbulence and combustion >Numerical Study of Micron-Scale Aluminum Particle Combustion in an Afterburner Using Two-Way Coupling CFD-DEM Approach
【24h】

Numerical Study of Micron-Scale Aluminum Particle Combustion in an Afterburner Using Two-Way Coupling CFD-DEM Approach

机译:使用双向耦合CFD-DEM方法在后燃器中微米级铝颗粒燃烧的数值研究

获取原文
获取原文并翻译 | 示例

摘要

Metal additives have positive effects on the flow field such as increasing the temperature and thrust, while this may decrease local gaseous velocity due to inter-phase drag forces on the other hand. An in-house computational solver was developed to study the typical multiphase flow with combustion. The solver relies on Eulerian-Lagrangian model and the two-way coupling approach. Numerical simulations were carried out on an afterburning chamber of a solid-fuel ramjet to study the impact of using aluminum particles as metal additive. For micron-scale aluminum particles, the injection area, initial temperature, diameter and mass flow rate are varied influence factors, while the afterburning chamber and inlet primary high-temperature gases are fixed for all the test cases. It was found that better particle dispersion can result in higher combustion efficiency due to increasing the gas-particle contact area as well as better heat transfer and diffusion. Injecting aluminum particles with higher initial temperature and smaller diameter tend to get ignited faster and then burn more easily, which means releasing more heat in the length-limited flow field. However, the aluminum particle massflow rate has much more complicated comprehensive influence than the changing rules of the adiabatic combustion temperature based on the NASA CEA code.
机译:金属添加剂对流动场具有积极影响,例如增加温度和推力,而这可能导致局部气流引起的局部气速度。开发了一个内部计算解算器,以研究典型的多相流用燃烧。求助符依赖于Eulerian-Lagrangian模型和双向耦合方法。在固体燃料拉米特的后燃室进行数值模拟,以研究使用铝颗粒作为金属添加剂的影响。对于微米级铝颗粒,注射面积,初始温度,直径和质量流量是不同影响因素的,而后燃室和入口初级高温气体是针对所有测试用例固定的。发现由于增加气体颗粒接触面积以及更好的传热和扩散,因此可以导致更好的颗粒分散体导致更高的燃烧效率。注入初始温度较高且较小直径较小的铝颗粒倾向于更快地点燃,然后更容易燃烧,这意味着在长度有限的流场中释放更多的热量。然而,基于NASA CEA CODE的铝颗粒质量流率比改变绝热燃烧温度的规则更复杂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号