首页> 外文期刊>ACS nano >Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates
【24h】

Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates

机译:在DNA折纸模板上使用病毒衣壳支架的等离子纳米结构的层次组装。

获取原文
获取原文并翻译 | 示例
       

摘要

Building plasmonic nanostructures using biomolecules as scaffolds has shown great potential for attaining tunable light absorption and emission via precise spatial organization of optical species and antennae. Here we report bottom-up assembly of hierarchical plasmonic nanostructures using DNA origami templates and MS2 virus capsids. These serve as programmable scaffolds that provide molecular level control over the distribution of fluorophores and nanometer-scale control over their distance from a gold nanoparticle antenna. While previous research using DNA origami to assemble plasmonic nanostructures focused on determining the distance-dependent response of single fluorophores, here we address the challenge of constructing hybrid nanostructures that present an organized ensemble of fluorophores and then investigate the plasmonic response. By combining finite-difference timedomain numerical simulations with atomic force microscopy and correlated scanning confocal fluorescence microscopy, we find that the use of the scaffold keeps the majority of the fluorophores out of the quenching zone, leading to increased fluorescence intensity and mild levels of enhancement. The results show that the degree of enhancement can be controlled by exploiting capsid scaffolds of different sizes and tuning capsid-AuNP distances. These bioinspired plasmonic nanostructures provide a flexible design for manipulating photonic excitation and photoemission.
机译:使用生物分子作为支架构建等离激元纳米结构显示出通过光学物种和触角的精确空间组织获得可调谐的光吸收和发射的巨大潜力。在这里,我们报告使用DNA折纸模板和MS2病毒衣壳自下而上的分层等离激元纳米结构的组装。这些用作可编程支架,其提供对荧光团的分布的分子水平控制和对其与金纳米粒子天线的距离的纳米级控制。虽然先前使用DNA折纸组装等离子纳米结构的研究集中于确定单个荧光团的距离依赖性响应,但在这里我们解决了构建杂交纳米结构的挑战,该结构呈现了荧光团的有组织的集合,然后研究了等离子响应。通过将有限差分时域数值模拟与原子力显微镜和相关的扫描共聚焦荧光显微镜相结合,我们发现支架的使用可将大多数荧光团保持在淬灭区域之外,从而导致荧光强度增加和增强程度温和。结果表明,增强程度可以通过利用不同大小的衣壳支架和调节衣壳-AuNP距离来控制。这些受生物启发的等离子体纳米结构为操纵光子激发和光发射提供了灵活的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号