...
首页> 外文期刊>ACS nano >Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: A case study on iron fluoride nanoparticles
【24h】

Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: A case study on iron fluoride nanoparticles

机译:咪唑基离子液体前驱体作为分散剂和粘合剂的高倍率锂电池电极的碳纳米管布线:以氟化铁纳米颗粒为例

获取原文
获取原文并翻译 | 示例

摘要

To meet the energy and power demands of lithium-based batteries, numerous nanostructured and -decorated material prototypes have been proposed. In particular for insulating electrodes, a decrease of grain size coupled with wiring by a conductive phase is quite effective in improving the electroactivity. In this work, we report a novel electron-wiring method using single-wall carbon nanotubes in an imidazolium-based ionic liquid precursor, which enables them to be well disentangled and dispersed, even unzipped. As a case study, in situ formed iron fluoride nanoparticles (~10 nm) are collected into micrometer-sized aggregates after wiring of merely 5 wt % carbon nanotubes in weight. These composite materials act as cathodes and exhibit a remarkable improvement of capacity and rate performances (e.g., 220 mAh/g at 0.1C and 80 mAh/g at 10C) due to the construction of mixed conductive networks. Therein, the ionic liquid remainder also serves as an in situ binder to generate a nanographene-coated fluoride, which can even run well without the addition of extra conductive carbon and binder. This nanotechnological procedure based on an ionic liquid succeeds without applying high temperature and pressure and is a significant step forward in developing high-power lithium batteries.
机译:为了满足锂基电池的能量和功率需求,已经提出了许多纳米结构和修饰的材料原型。特别是对于绝缘电极,通过导电相减小与布线耦合的晶粒尺寸在改善电活性方面非常有效。在这项工作中,我们报告了一种在咪唑基离子液体前体中使用单壁碳纳米管的新型电子布线方法,该方法使它们能够很好地解开并分散,甚至解压缩。作为案例研究,在仅按重量计5 wt%的碳纳米管布线后,将原位形成的氟化铁纳米颗粒(约10 nm)收集为微米级的聚集体。由于混合导电网络的构造,这些复合材料充当阴极,并且显示出容量和速率性能的显着改善(例如,在0.1C时为220 mAh / g,在10C时为80 mAh / g)。其中,离子液体残留物还用作原位粘合剂以生成纳米石墨烯涂层的氟化物,即使不添加额外的导电碳和粘合剂,该氟化物甚至可以很好地运行。这种基于离子液体的纳米技术程序无需施加高温和高压即可成功运行,这是开发高功率锂电池的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号