首页> 外文学位 >Electrochemical Study of Hollow Carbon Nanospheres as High-Rate and Low Temperature Negative Electrodes for Lithium Ion Batteries.
【24h】

Electrochemical Study of Hollow Carbon Nanospheres as High-Rate and Low Temperature Negative Electrodes for Lithium Ion Batteries.

机译:空心碳纳米球作为锂离子电池高速,低温负极的电化学研究。

获取原文
获取原文并翻译 | 示例

摘要

The continued advancements in portable electronics have demanded more advanced power sources. To date, lithium ion batteries have been the state-of-the-art for portable devices. One significant drawback of lithium ion batteries is the slow charging times and their performance at low temperatures. In this dissertation, we explore the electrochemical behavior of a new lithium ion, negative electrode active material, hollow carbon nanospheres (HCNS). HCNS are ∼50 nm in diameter hollow spheres with ∼5 - 10 nm graphic walls which have a nominal reversible capacity of ∼220 mAh/g.;We assembled and cycled HCNS as a lithium ion anode material and compared it to graphite, currently used as the anode material in most commercial lithium ion batteries. The charging mechanism of HCNS is an intercalation of the lithium ions into the graphitic walls of the spheres, similar to graphite, determined by diffraction and electroanalytical techniques. However, the HCNS electrodes cycled at much higher charge and discharge rates than graphite. Additionally, we demonstrated HCNS cycling at low temperatures (-20 *C) in electrolytes not obtainable by graphite due to material exfoliation during cycling. Although, due to the large surface area of HCNS, the first cycle coulombic losses are very high. This work has resulted in an understanding of a potentially new lithium ion battery anode material with significantly better cycling attributes than the current anode material.
机译:便携式电子设备的不断发展需要更先进的电源。迄今为止,锂离子电池已经成为便携式设备的最新技术。锂离子电池的一个重要缺点是充电时间慢以及它们在低温下的性能。本文探讨了新型锂离子负极活性材料空心碳纳米球的电化学行为。 HCNS是直径约50 nm的空心球,图形壁约5-10 nm,标称可逆容量约为220 mAh / g;我们组装并循环使用HCNS作为锂离子阳极材料,并将其与目前使用的石墨进行比较作为大多数商用锂离子电池的负极材料。 HCNS的充电机制是通过衍射和电分析技术将锂离子嵌入到球体的石墨壁中,类似于石墨。但是,HCNS电极的循环充放电速率比石墨高。此外,由于循环过程中材料剥落,我们证明了HCNS在低温(-20 * C)循环中无法通过石墨获得的电解质循环。尽管由于HCNS的表面积大,第一周期库仑损失非常高。这项工作使人们了解了一种潜在的新型锂离子电池负极材料,其循环特性要比目前的负极材料好得多。

著录项

  • 作者

    Cox, Jonathan David.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Condensed matter physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号