首页> 外文期刊>Faraday discussions >Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes
【24h】

Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes

机译:CO2与化学品的生物电化学转化:CO2作为用于批量和连续模式的电力驱动生物制备的下一代原料

获取原文
获取原文并翻译 | 示例
       

摘要

The recent concept of microbial electrosynthesis (MES) has evolved as an electricitydriven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N-2 gas. The highest acetate production rate of 149 mg L-1 d(-1) was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L-1 d(-1). In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended microorganisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.
机译:最近的微生物电气合成(MES)的概念已经进化为使用微生物作为生物催化剂的低价二氧化碳(CO2)的化学品的电气生产技术。来自CO2的MES包括使用在电极化阴极上产生的还原等同物的二氧化碳对多碳有机化合物的生物电化学还原。由于CO2大量可用,因此使用CO2作为化学物质的原料,其使用与食品供应链无关。基于CO2还原的MES产生醋酸盐作为主要产品。为了使用不同操作模式(分批与连续)来阐明生物电化学二氧化碳还原过程的性能,使用MES系统进行研究,其中包含20:80(v / v)或80的流通生物疗法:20(v / v)二氧化碳:N-2气体。在批量模式下,用3.1V施加的电池电压观察到149mg L-1 D(-1)的最高乙酸盐生产速率。在连续模式下运行时,最大速率为100mg L-1 D(-1),实现了高醋酸盐。在连续模式下,乙酸盐产生不受长期操作的持续性,可能由于生物病理室内的微生物生物催化剂不足(即悬浮的微生物被洗脱出系统)。重新启动批次模式操作导致重新生产的醋酸盐。这表明悬浮的生物催化剂在附着(生物膜成形)生物催化剂上表观统治。生物液体的长期CO 2还原导致乙酸盐的积累,也形成了乙醇和丁酸丁酸的更加减少的化合物。应研究生产率和不同生物质保留策略的改进(例如,选择生物膜形成微生物),以便使用MES从二氧化碳中连续生化生产。当然,将需要其他流程优化来建立MES作为一种创新的可持续技术,用于将二氧化碳的生物化学制造为下一代原料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号