首页> 外文学位 >Modeling of the electrochemical conversion of CO2 in microfluidic reactors.
【24h】

Modeling of the electrochemical conversion of CO2 in microfluidic reactors.

机译:在微流反应器中二氧化碳的电化学转化模型。

获取原文
获取原文并翻译 | 示例

摘要

Today's world faces immense challenges associated with meeting its energy needs, due to its current dependence on fossil fuels. At the same time, the world faces the threat of global climate change linked to CO 2 emissions. Indeed, global energy consumption is expected to double in the next 50 years. This accelerates the depletion of conventional fossil fuels and leads to a steady increase in CO2 emission. Globally, CO2 emission through the combustion of fossil fuels has increased by about 1.6 times between 1990 (the Kyoto Protocol reference year) and 2013, with approximately 9.9 GtC added to the atmosphere in 2013. Taken together, the dual challenges of finding alternative energy sources and curbing CO 2 emissions are very daunting. When it is powered by carbon-neutral electricity sources, the electrochemical conversion of CO2 into value-added chemicals offers an economically viable route to recycle CO 2 towards reducing CO2 emissions and reducing dependence on fossil fuels.;The majority of prior studies on the electrochemical conversion of CO 2 are experimental in nature, focused on unravelling the mechanisms of known catalysts. As an alternative approach to the laborious experiments, first-principles modeling of the electrochemical reactors can complement the current experimental work by elucidating the complex transport and electrochemistry, particularly in the porous electrodes, and help in the design and optimization of such reactors. Currently, there is a lack of detailed modeling for the aqueous electrochemical reduction of CO2 in a microfluidic reactor, which has been demonstrated experimentally to be an effective reactor and a versatile analytical tool.;This thesis focuses on developing a mathematical modeling framework for the electrochemical conversion of CO2 to CO in microfluidic reactors. Conversion of CO2 into CO is attractive due to the versatility of CO (with H2) as a feedstock for the production of a variety of products including liquid hydrocarbon fuels. A full model that takes into account of all the significant physics and electrochemistry in the cell, including the transport of species and charges, momentum and mass conservations, and electrochemical reactions, is first formulated. The full model that comprises of a system of coupled partial differential equations is solved using finite element method. It is then calibrated and validated using experimental data obtained for various inlet flow rates and compositions. Parametric studies for various design and operating variables are subsequently performed using the validated model. To reduce the computational time, yet preserve the geometric resolution and leading order behavior of the cell, narrow-gap approximation and scaling arguments are invoked which allow for significant reduction in the mathematical complexity of the full model and eventually approximate analytical solutions. The unit cell models are then extended to stack models for simulation and analysis of the electrochemical reduction of CO2 in a microfluidic cell stack.
机译:由于当今对化石燃料的依赖,当今世界面临着与其能源需求相关的巨大挑战。同时,世界面临与CO 2排放相关的全球气候变化的威胁。的确,预计未来50年全球能源消耗将翻一番。这加速了常规化石燃料的消耗,并导致二氧化碳排放量稳定增加。在全球范围内,从1990年(《京都议定书》参考年)到2013年,通过化石燃料燃烧产生的二氧化碳排放量增加了约1.6倍,2013年大气中的二氧化碳排放量增加了约9.9 GtC。总的来说,寻找替代能源的双重挑战抑制CO 2排放非常艰巨。当使用碳中和电源供电时,CO2的电化学转化为增值化学品提供了一种经济可行的途径,可以循环利用CO 2以减少CO 2排放并减少对化石燃料的依赖。 CO 2的转化本质上是实验性的,着眼于揭示已知催化剂的机理。作为费力的实验的替代方法,电化学反应器的第一原理建模可以通过阐明复杂的传输和电化学(特别是在多孔电极中)来补充当前的实验工作,并有助于此类反应器的设计和优化。目前,在微流体反应器中缺少用于水电化学还原CO2的详细模型,已通过实验证明是有效的反应器和通用的分析工具。;本论文着重于开发用于电化学的数学模型框架在微流反应器中将二氧化碳转化为二氧化碳。由于将CO(与H2一起)用作生产包括液态烃燃料在内的各种产品的原料,因此将CO2转化为CO是有吸引力的。首先制定一个完整的模型,该模型考虑了电池中所有重要的物理和电化学,包括物质和电荷的传输,动量和质量守恒以及电化学反应。使用有限元方法求解包含耦合偏微分方程组的完整模型。然后使用获得的各种入口流速和成分的实验数据对它进行校准和验证。随后使用经过验证的模型对各种设计和操作变量进行参数研究。为了减少计算时间,同时又保留了单元格的几何分辨率和前导行为,调用了窄间隙逼近和缩放参数,可以显着降低完整模型的数学复杂度,并最终实现近似解析解。然后将单元电池模型扩展到堆栈模型,以模拟和分析微流电池堆栈中CO2的电化学还原。

著录项

  • 作者

    Wu, Kunna.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Chemical engineering.;Systems science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号