首页> 外文期刊>Global change biology >Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data
【24h】

Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data

机译:土壤水分胁迫对光合作用置换气孔限制的影响:稳定碳同位素数据的见解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Atmospheric aridity and drought both influence physiological function in plant leaves, but their relative contributions to changes in the ratio of leaf internal to ambient partial pressure of CO2(chi) - an index of adjustments in both stomatal conductance and photosynthetic rate to environmental conditions - are difficult to disentangle. Many stomatal models predicting chi include the influence of only one of these drivers. In particular, the least-cost optimality hypothesis considers the effect of atmospheric demand for water on chi but does not predict how soils with reduced water further influence chi, potentially leading to an overestimation of chi under dry conditions. Here, we use a large network of stable carbon isotope measurements in C(3)woody plants to examine the acclimated response of chi to soil water stress. We estimate the ratio of cost factors for carboxylation and transpiration (beta) expected from the theory to explain the variance in the data, and investigate the responses of beta(and thus chi) to soil water content and suction across seed plant groups, leaf phenological types and regions. Overall,beta decreases linearly with soil drying, implying that the cost of water transport along the soil-plant-atmosphere continuum increases as water available in the soil decreases. However, despite contrasting hydraulic strategies, the stomatal responses of angiosperms and gymnosperms to soil water tend to converge, consistent with the optimality theory. The prediction of beta as a simple, empirical function of soil water significantly improves chi predictions by up to 6.3 +/- 2.3% (mean +/- SDof adjusted-R-2) over 1980-2018 and results in a reduction of around 2% of mean chi values across the globe. Our results highlight the importance of soil water status on stomatal functions and plant water-use efficiency, and suggest the implementation of trait-based hydraulic functions into the model to account for soil water stress.
机译:大气干旱和干旱在植物叶中影响生理功能,但它们的相对贡献对CO2(CHI)的叶片内部压力与环境部分压力之比的变化 - 对环境条件的调整指标 - 是难以解开。预测Chi的许多气孔模型包括只有其中一个驱动程序的影响。特别是,最不成本的最优性假设考虑了大气需求对奇的水的影响,但不能预测水的土壤如何进一步影响Chi,可能导致干燥条件下的志估计。在这里,我们在C(3)木本植物中使用大型稳定碳同位素测量测量,以检查Chi对土壤水分应激的适应响应。我们估计预期的羧化和蒸腾剂(β)的成本因素的比例从理论解释数据的差异,并研究β(和因此CHI)对土壤含水量和种子植物组的吸力的反应,叶酚类型和地区。总体而言,β随着土壤干燥线性降低,暗示沿着土壤 - 植物气氛连续的水运输成本随着土壤中可用的水分而增加。然而,尽管液压策略形成了对比的液压策略,所谓的气孔和裸子植物对土壤水的气孔反应往往会聚,这与最优理论一致。将β作为土壤水的简单,经验函数的预测显着改善了高达6.3 +/- 2.3%(平均+/- SDOF调节-R-2),并导致减少2左右全球均值的百分比值。我们的成果突出了土壤水分地位对气孔函数和植物利用效率的重要性,并建议在模型中实施特质的液压功能,以解释土壤水分应激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号