首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Molecular tagging velocimetry for confined rarefied gas flows: Phosphorescence emission measurements at low pressure
【24h】

Molecular tagging velocimetry for confined rarefied gas flows: Phosphorescence emission measurements at low pressure

机译:用于狭窄的稀薄气体流动的分子标记测速法:低压下的磷光发射测量

获取原文
获取原文并翻译 | 示例
       

摘要

Rarefied gas flows have a central role in microfluidic devices for many applications in various scientific fields. Local thermodynamic non-equilibrium at the wall-gas interface produces macroscopic effects, one of which is a velocity slip between the gas flow and the solid surface. Local experimental data able to shed light on this physical phenomenon are very limited in the literature. The molecular tagging velocimetry (MTV) could be a suitable technique for measuring velocity fields in gas micro flows. However, the implementation of this technique in the case of confined and rarefied gas flows is a difficult task: the reduced number of molecules in the system, which induces high diffusion, and the low concentration of the molecular tracer both drastically reduce the intensity and the duration of the exploitable signal for carrying out the velocity measurements. This work demonstrates that the application of the 1D-MTV by direct phosphorescence to gas flows in the slip flow regime and in a rectangular long channel is, actually, possible. New experimental data on phosphorescence emission of acetone and diacetyl vapors at low pressures are presented. An analysis of the optimal excitation wavelength is carried out to maximize the intensity and the lifetime of the tracer emission. The experimental results demonstrate that a low concentration of about 5-10% of acetone vapor excited at 310 nm or of diacetyl vapor excited at 410 nm in a helium mixture at pressures on the order of 1 kPa provides an intense and durable luminescent signal. In a 1-mm deep channel, a gas flow characterized by these thermodynamic conditions is in the slip flow regime. Moreover, numerical experiments based on DSMC simulations are carried out to demonstrate that an accurate measurement of the velocity profile in a laminar pressure-driven flow is possible for the rarefied conditions of interest.
机译:稀有的气体流动在各种科学领域的许多应用中具有核心作用。壁 - 气体界面处的局部热力学非平衡产生宏观效应,其中一个是气体流动和固体表面之间的速度滑移。本地实验数据能够在这种物理现象上阐明的揭示在文献中非常有限。分子标记测速速度(MTV)可以是用于测量气体微流动中的速度场的合适技术。然而,在狭窄和稀有气体流动的情况下实现该技术是困难的任务:系统中的分子数减少,其诱导高扩散,并且分子示踪剂的低浓度均急剧降低强度和用于执行速度测量的可利用信号的持续时间。该工作表明,实际上,可以通过直接磷光将1D-MTV应用于气流状态和矩形长通道中的气流。提出了关于低压下丙酮磷光和二乙酰蒸汽的新实验数据。对最佳激发波长的分析进行以最大化示踪发射的强度和寿命。实验结果表明,在310nm或在410nm处在1kPa的压力下在410nm下激发在310nm或在410nm下激发的丙酮蒸气的低浓度为1kPa的氦混合物提供强烈耐用的发光信号。在1毫米深通道中,通过这些热力学条件表征的气体流动是滑动流动状态。此外,对基于DSMC模拟的数值实验进行了表明,对于稀有的感兴趣的感兴趣的感兴趣的感兴趣条件,可以精确测量层压压力流动中的速度曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号