首页> 外文学位 >Nonintrusive molecular velocity measurements in air and reacting flows using hydroxyl tagging velocimetry.
【24h】

Nonintrusive molecular velocity measurements in air and reacting flows using hydroxyl tagging velocimetry.

机译:使用羟基标记测速仪在空气和反应流中进行非侵入式分子速度测量。

获取原文
获取原文并翻译 | 示例

摘要

A new non-intrusive molecular technique, namely Hydroxyl Tagging Velocimetry (HTV), has been developed for unseeded instantaneous flow velocity measurements. Initially at some time, t0, single-photon photodissociation of H2O by a pulse of an ArF excimer “write” laser operating at ∼193 nm wavelength quickly leads to the formation of OH and H photoproducts by accessing the steeply repulsive A1B1 surface of H2O. The ArF laser is split into 14 beams by compact micro-lens optics to produce a multiline 7 x 7 optical grid of OH. After a certain variable delay time, t 0 + Δt, the OH lines are interrogated by tunable “read” lasers at various operating wavelengths (248, 282, or 308 nm) thus accessing different vibrational levels (3 ← 0), (1 ← 0), or (0 ← 0) respectively of the A2Σ+ (v = i) ← X2Π i (v′′ = j) OH transition. When a KrF excimer laser excites the A2Σ + (v = 3) ← X 2Πi (v′′ = 0) OH band, the resulting fluorescence is relatively weak due to predissociation. Thus, only high temperature chemically-reacting flows (containing significant populations of vibrationally-excited H2O) are successfully probed with the KrF laser.; A strong OH fluorescence “read” process must be used for low temperature HTV applications where only ground vibrational state H 2O exists. By operating the frequency-doubled read dye at ∼308 nm or at ∼282 nm, the vibrational transitions of the (0 ← 0 ) or (1 ← 0) OH bands respectively are accessed. These strongly-fluorescing OH transitions compensate for the relatively weak 193 nm photodissociation cross-section of ground vibrational state H 2O.; A high-sensitivity intensified charge-coupled device (ICCD) camera coupled to a UV lens collects the fluorescence from the OH from its initial and final locations thus providing the means of establishing unambiguous reference points in the experimental flows. A time-of-flight software (DaVis 6.0) determines the instantaneous velocity field based on displacement.; Detailed studies of OH formation, concentration levels, and depletion mechanisms have been conducted and are presented in this work. Chemical kinetic analyses for either low temperature (nonreacting) or high temperature (reacting) flowfields reveal the wide applicability of the newly developed velocity measurement technique. A previously developed chemical kinetics mechanism for room temperature air is tuned and validated. Fluorescence signal intensity, noise, and yields have been studied and compared to experimental results for HTV tag lifetimes. The HTV method is calibrated in a well-characterized flowfield and estimates on velocity accuracy calculations are presented. Finally, the HTV method is demonstrated measuring velocities in various reacting and nonreacting flowfields.
机译:已经开发了一种新的非侵入式分子技术,即羟基标记测速法(HTV),用于非种子瞬时流速测量。最初在某个时间,通过ArF准分子“写入”激光的脉冲在H 2 O的脉冲下进行 t 0 单光子光解离。约193 nm的波长通过进入H 的强烈排斥的 A 1 B 1 表面迅速导致OH和H光产物的形成2 O。紧凑的微透镜光学器件将ArF激光分为14束,以产生OH的多线7 x 7光栅。经过一定的可变延迟时间后, t 0 + Δt,OH线被可调谐的“读取”激光器在各种工作波长下询问(248 ,282或308 nm),从而获得不同的振动级别( 3←0 ),( 1←0 )或( 0←0 )分别 A 2 Σ + (v = i )← X 2 Π i (v '' = j )OH过渡。当KrF准分子激光激发 A 2 Σ + (v ' = 3 )← X 2 Π i (v '' = 0 )OH带,由于预离解而导致的荧光相对较弱。因此,用KrF激光只能成功探测高温化学反应流(包含大量的振动激发H 2 O)。对于只有地面振动状态H 2 O存在的低温HTV应用,必须使用强OH荧光“读取”过程。通过在〜308 nm或〜282 nm处使倍频的读取染料工作,( 0←0 )或( 1←0 )OH波段的振动跃迁分别被访问。这些强荧光的OH跃迁补偿了地面振动状态H 2 O相对弱的193 nm光解离截面。与UV透镜耦合的高灵敏度增强型电荷耦合器件(ICCD)摄像机从OH的初始位置和最终位置收集OH的荧光,从而提供了在实验流程中建立明确参考点的方法。飞行时间软件(DaVis 6.0)根据位移确定瞬时速度场。进行了详细的OH形成,浓度水平和耗竭机理的研究,并在这项工作中进行了介绍。低温(非反应性)或高温(反应性)流场的化学动力学分析表明,新开发的速度测量技术具有广泛的适用性。对先前开发的用于室温空气的化学动力学机制进行了调整和验证。已经研究了荧光信号强度,噪声和产量,并将其与HTV标签寿命的实验结果进行了比较。在特征明确的流场中对HTV方法进行了校准,并给出了对速度精度计算的估计。最后,HTV方法被证明可以测量各种反应和非反应流场中的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号