首页> 外文期刊>Experimental Eye Research >Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury
【24h】

Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury

机译:PTEN / SOCS3缺失对视网膜神经损伤后视网膜神经节细胞树突缩减的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Retinal ganglion cell (RGC) degeneration, leading to irreversible blindness in chronic optic neuropathies, commonly begins with dendritic shrinkage followed by axon degeneration. Although limited axon regeneration in the optic nerve is possible with a genetic deletion of PTEN/SOCS3 after optic nerve injury, the roles of PTEN/SOCS3 on dendritic preservation and regeneration remain unclear. This study investigated the effect of PTEN/SOCS3 genetic deletion on the structural integrity of RGC dendrites and axons in the retina following optic nerve crush. Using time-lapse, in vivo confocal scanning laser ophthalmoscopy to serially image dendritic and axonal arborizations of RGCs over six months after injury, RGC dendrites and axons were only preserved in Thy-1-YFP/PTEN-/- and Thy-1-YFP/PTEN(-/-)SOCS3(-/-) mice, and axons in the retina regenerated at a rate of 21.1 mu m/day and 15.5 mu m/day, respectively. By contrast, dendritic complexity significantly decreased in Thy-1-YFP-SOCS3(-/-) and control mice at a rate of 7.0 %/day and 7.1 %/day, respectively, and no axon regeneration in the retina was observed. RGC survival probability was higher in Thy-1-YFP/PTEN-/- and Thy-1-YFP/PTEN(-/-)SOCS3(-/-) mice compared with Thy-1-YFP-SOCS3(-/-) and control mice. The differential responses between the transgenic mice demonstrate that although a genetic deletion of PTEN, SOCS3, or PTEN/SOCS3 allows partial axon regeneration in the optic nerve after optic nerve crush, a deletion of PTEN, but not SOCS3, ameliorates RGC dendritic shrinkage. This shows that the signaling pathways involved in promoting axon regeneration do not equally contribute to the preservation of dendrites, which is crucial to the translational application of neuroregenerative therapies for visual restoration.
机译:视网膜神经节细胞(RGC)退化,导致慢性光学神经病在慢性视神经病中的不可逆失明,通常以树突状收缩而开始,然后是轴突变性。虽然视神经中的轴突再生有限,但由于视神经损伤后PTEN / SOCS3的遗传缺失,PTEN / SOCS3对树枝状保存和再生的作用仍不清楚。本研究调查了PTEN / SOCS3遗传缺失对视网膜后视网膜中RGC树枝状和轴突的结构完整性的影响。使用延时,在体内共聚焦扫描激光眼镜下六个月后六个月的RGCS串行图像的树突和轴突树枝状物,RGC树突和轴突仅存在于Thy-1-YFP / PTEN - / - 和Thy-1-YFP中/ PTEN( - / - )SOCS3( - / - )小鼠和视网膜中的轴突,分别以21.1μm/天和15.5μm/天的速度再生。相比之下,在-1-yfp-socs3( - / - )中的树突复杂性显着降低,并以7.0%/天的速率和7.1%/天的速率进行对照小鼠,并且观察到视网膜中的轴突再生。与Thy-1-YFP-SOCS3( - / - )相比,RGC存活概率较高并控制小鼠。转基因小鼠之间的差异响应表明,尽管PTEN,SOCS3或PTEN / SOCS3的遗传缺失允许在视神经挤压后的视神经中的部分轴颈再生,但是PTEN的缺失,但不是SOCS3,改善RGC树突状收缩。这表明涉及促进轴突再生的信号通路并不同样有助于维护树突,这对于神经营养治疗进行视觉修复的平移应用至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号