首页> 外文期刊>Experimental Neurology >Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury
【24h】

Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury

机译:裂缝术治疗靶向后生物能量恢复和神经保护作用:创伤性脑损伤后Pioglitazone的新机制

获取原文
获取原文并翻译 | 示例
           

摘要

Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca2+-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca2+-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca2+-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.
机译:线粒体功能障碍是许多神经变性疾病状态的枢轴事件,包括创伤性脑损伤(TBI)和脊髓损伤(SCI)。驱动线粒体功能障碍的一种可能的机制是谷氨酸脆毒性,导致神经元或胶质色血管中的Ca2 + -overload。已经显示出减少钙过载和增强生物能器学的疗法来改善神经原因。 Pioglitazone是FDA批准的化合物,表明TBI和SCI后的神经保护性能,但下面的机制是未知的。假设吡格列酮与新型线粒体蛋白质之间的相互作用是CNS损伤后神经保护的基础。我们发现,Mittoneet是Ca2 +介导的线粒体功能障碍的重要介体,并表明具有吡格列酮的结合裂缝瘤可以预防Ca2 +诱导的功能障碍。通过利用野生型(WT)和Mittoneet零小鼠,我们表明吡格列酮减轻线粒体功能障碍,并在WT小鼠中提供神经保护,但在弥根键小鼠中没有产生恢复效果。我们还表明NL-1是一种新型Mitoneet配体,是在两鼠和大鼠中TBI后的神经保护。这些结果支持Mittoneet对线粒体生物能诊学的关键作用,其在TBI神经病理学后遗症中的重要性以及吡格列酮介导的神经保护的必要性。由于线粒体功能障碍是在糖尿病,运动神经元疾病和癌症等其他疾病中看到的病原体生物学并发症,因此靶向巨型型肉豆蔻瘤可以提供一种新的微型治疗靶和治疗干预,用于扩大TBI之外的疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号