首页> 外文期刊>Environmental Science: Processes & Impacts >Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils
【24h】

Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils

机译:厌氧呼吸途径和北极湿地土壤增加基板可用性的响应

获取原文
获取原文并翻译 | 示例
           

摘要

The availability of labile carbon (C) compounds in Arctic wetland soils is expected to increase due to thawing permafrost and increased fermentation as a result of decomposition of organic matter with warming. How microbial communities respond to this change will affect the balance of CO(2)and CH(4)emitted during anaerobic organic matter decomposition, and ultimately the net radiative forcing of greenhouse gas emissions from these soils. While soil water content limits aerobic respiration, the factors controlling methanogenesis and anaerobic respiration are poorly defined in suboxic Arctic soils. We conducted incubation experiments on two tundra soils from field sites on the Seward Peninsula, Alaska, with contrasting pH and geochemistry to determine the pathways of anaerobic microbial respiration and changes with increasing substrate availability upon warming. In incubation of soils from the circumneutral Teller site, the ratio of CO(2)to CH(4)dropped from 10 to <2 after 60 days, indicating rapid depletion of alternative terminal electron acceptors (TEAs). Addition of acetate stimulated production of CO(2)and CH(4)in a nearly 1 : 1 ratio, consistent with methanogenesis, and the composition of the microbial community shifted to favor clades capable of utilizing the added acetate such as the Fe(iii)-reducingGeobacterand the methanogenic archaeaMethanosarcina. In contrast, both CO(2)and CH(4)production declined with acetate addition during incubation of soils from the more acidic Council site, and fermentative microorganisms increased in abundance despite the high availability of fermentation products. These results demonstrate that the degree to which increasing substrate availability stimulates greenhouse gas production in tundra wetlands will vary widely depending on soil pH and geochemistry.
机译:由于在具有变暖的有机质分解的结果,北极湿地土壤中的不稳定碳(C)化合物的可用性碳(C)化合物预计会增加和由于有机质分解而增加的发酵。微生物社区如何应对这种变化将影响在厌氧有机物分解过程中发出的CO(2)和CH(4)的平衡,并最终从这些土壤中净辐射强制迫使温室气体排放。虽然土壤含水量限制了有氧呼吸,但控制甲烷化的因子和厌氧呼吸的因素在中草原土壤中定义不足。我们对来自阿拉斯加的Seward半岛的田地网站进行了孵育实验,具有对比的pH和地球化学,以确定厌氧微生物呼吸的途径和随着升温时增加基板可用性的变化。在循环沥序部位的土壤中孵育,60天后的CO(2)至CH(4)的比例从10到<2滴到<2,表明替代末端电子受体(茶)的快速消耗。在近1:1的比例中添加醋酸乙酸刺激的CO(2)和CH(4)的产生,与甲烷发生一致,并且微生物群落的组成转移以有利于能够利用加入乙酸酯的乙酸酯(III )-redutegeobacterand甲状腺原酸甲基虫草虫。相比之下,CO(2)和CH(4)产生在孵化从酸性理事会现场的土壤孵育过程中,由于发酵产品的可用性高,发酵微生物的发酵微生物增加。这些结果表明,增加基板可用性的程度刺激苔原湿地的温室气体产量取决于土壤pH和地球化学的广泛变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号