...
首页> 外文期刊>Environmental Science: Nano >Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by Shewanella oneidensis MR-1 at the molecular scale
【24h】

Probing the biotransformation of hematite nanoparticles and magnetite formation mediated by Shewanella oneidensis MR-1 at the molecular scale

机译:抑制Shewanella inidensis MR-1介导的赤铁矿纳米颗粒和磁铁矿形成的生物转化

获取原文
获取原文并翻译 | 示例
           

摘要

Although the existence of Fe(III) (hydr)oxide nanoparticles (NPs) in natural environments has been recently recognized, their migration and transformation, which are substantially affected by the microbial reduction process, remain unclear. In this study, hematite bioreduction and magnetite formation induced by Shewanella oneidensis MR-1, a typical metal-reducing bacterial strain, were investigated using an integrated approach that combined experiments and computational simulations at the molecular scale. High-resolution transmission electron microscopy coupled with selected area electron diffraction (SAED), Raman spectroscopy and magnetic property analyses confirmed the biogenic magnetite formation. The electron paramagnetic resonance (EPR) spectra show a decay of the EPR intensity with incubation time, implying that the biotransformation of hematite to magnetite led to concurrent changes in their contents and local structures. X-ray absorption fine spectroscopy (XAFS) identified a time-resolved structural evolution of Fe(II)/Fe(III) coordination. The octahedral configuration upon Fe(II) production was subsequently validated by DFT calculations. Microbial reductive dissolution provided various intermediate states and new chemical environments regarding Fe(II)/Fe(III) complexes, such as monodentate and bidentate coordination patterns. Bioreduction caused the breakage of ironoxygen bonds in hematite and the concomitant formation of Fe complexing microstructures for biogenic magnetite production. All these findings reveal the underlying mechanisms for the biotransformation of Fe minerals at the molecular scale and may allow us to better understand the speciation, immobilization and bioavailability of hematite NPs in natural systems.
机译:尽管最近已经认识到了自然环境中的Fe(III)(氢)氧化物纳米颗粒(NPS),但它们的迁移和转化基本上受微生物还原过程的影响仍然不清楚。在该研究中,使用综合方法研究了沉坦偶联型MR-1,典型的金属还原细菌菌株诱导的赤铁矿生物诱导和磁铁矿形成,该综合方法将实验和计算模拟以分子尺度组合。高分辨率透射电子显微镜与选定的区域电子衍射(SAED),拉曼光谱和磁性分析证实了生物磁铁矿形成。电子顺磁共振(EPR)光谱显示出EPR强度的衰减,其孵育时间意味着赤铁矿到磁铁矿的生物转化导致其内容物和局部结构的同时变化。 X射线吸收细谱(XAFS)确定了Fe(II)/ Fe(III)协调的时间分辨结构演变。随后通过DFT计算验证了Fe(II)生产的八面体配置。微生物还原溶解提供了各种中间状态和关于Fe(II)/ Fe(III)复合物的新型化学环境,例如单齿和双齿协调模式。生物测定导致赤铁矿中Ironoxygen键的破裂以及伴随的生物磁铁矿生产Fe络合微观结构。所有这些发现都揭示了分子尺度的Fe矿物质生物转化的潜在机制,可以让我们更好地了解天然系统中赤铁矿NP的物种,固定化和生物利用度。

著录项

  • 来源
    《Environmental Science: Nano》 |2017年第12期|共10页
  • 作者单位

    Univ Sci &

    Technol China Dept Chem CAS Key Lab Urban Pollutant Convers Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Chem CAS Key Lab Urban Pollutant Convers Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Chem CAS Key Lab Urban Pollutant Convers Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Chem CAS Key Lab Urban Pollutant Convers Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Chem CAS Key Lab Urban Pollutant Convers Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学、安全科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号