...
首页> 外文期刊>Environmental Science: Nano >Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes
【24h】

Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes

机译:通过选择性富集抗生素抗性基因,稀土氧化物纳米粒子促进土壤微生物抗生素抗性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The booming application of manufactured nanoparticles raises concerns about their unintentional environmental consequences, one of which is whether nanoparticles will co-selectively enrich soil antibiotic resistance genes (ARGs) which may be transferred to human pathogens through the food chain. We examined soil microbial resistance to tetracycline in three agricultural soils after pre-exposure to 0-100 mg kg(-1) nanoparticulate La2O3, Nd2O3, and Gd2O3 for up to 60 days. Rare earth oxide nanoparticle pre-exposure promoted soil microbial antibiotic resistance, as reflected by the decreased effects of tetracycline on soil microbial biomass and activity in nanoparticle-amended soils. Quantification of ARGs by high-capacity quantitative polymerase chain reaction revealed that the enhanced antibiotic resistance was attributed to the increased relative abundance and diversity of total ARGs which targeted all major classes of antibiotics. Among the 168 observed ARGs, 40 ARGs (e.g., 8 for La2O3, 21 for Nd2O3, and 23 for Gd2O3) were significantly enriched in the presence of nanoparticles (e.g., tetracycline and multidrug resistance genes, P 0.05), indicating the selective pressure imposed by rare earth oxide nanoparticles in promoting the proliferation of antibiotic resistance genes in soil microbial communities. There was a significantly positive correlation between the relative abundance of mobile genetic elements and ARGs (P 0.05), suggesting that horizontal gene transfer may have aided the spread and proliferation of ARGs in nanoparticle-amended soils. Taken together, these findings demonstrate that nanoparticulate La2O3, Nd2O3, and Gd2O3 can aggravate soil microbial antibiotic resistance by enriching ARGs through co-selection and horizontal gene transfer, and thus forewarn of the environmental and health risks of rare earth oxide nanoparticles in soil ecosystems.
机译:制造纳米颗粒的蓬勃发展施加涉及其无意的环境后果的担忧,其中一个是纳米颗粒是否将共同选择性地丰富土壤抗生素抗性基因(ARGS),其可以通过食物链转移到人病原体中。在暴露于0-100mg kg(-1)纳米颗粒La2O3,Nd2O3和Gd2O3期间,在300毫克(-1)纳米颗粒后的三种农业土壤中检查了土壤微生物耐药土壤耐旱性。稀土氧化物纳米粒子预曝光促进了土壤微生物抗生素抗性,如四环素对土壤微生物生物量和纳米粒子修正土壤中的活性的降低反映。通过高容量定量聚合酶链式反应进行args的定量表明,增强的抗生素抗性归因于靶向所有主要抗生素类别的总产阶级的相对丰度和多样性。在168个观察到的arg中,在纳米颗粒(例如,四环素和多药抗性基因,P <0.05)存在下,显着富集,40 args(例如,对于ND2O3,21例,对于GD2O3,21例。稀土氧化物纳米颗粒施加的压力促进土壤微生物群落中抗生素抗性基因的增殖。移动遗传元素和args(P <0.05)的相对丰度之间存在显着的正相关性,表明水平基因转移可以促进纳米粒子修正的土壤中Args的扩散和增殖。总之,这些研究结果表明,纳米颗粒La2O3,Nd2O3和Gd2O3可以通过共同选择和水平基因转移来加剧土壤微生物抗生素抗性,从而预先进行土壤生态系统中稀土氧化物纳米粒子的环境和健康风险。

著录项

  • 来源
    《Environmental Science: Nano》 |2019年第2期|共11页
  • 作者单位

    Chinese Acad Sci State Key Lab Urban &

    Reg Ecol Res Ctr Ecoenvironm Sci Beijing 100085 Peoples R China;

    Chinese Acad Sci State Key Lab Urban &

    Reg Ecol Res Ctr Ecoenvironm Sci Beijing 100085 Peoples R China;

    Univ Calif Los Angeles Div NanoMed Dept Med Los Angeles CA 90095 USA;

    Chinese Acad Sci State Key Lab Urban &

    Reg Ecol Res Ctr Ecoenvironm Sci Beijing 100085 Peoples R China;

    Chinese Acad Sci State Key Lab Urban &

    Reg Ecol Res Ctr Ecoenvironm Sci Beijing 100085 Peoples R China;

    Chinese Acad Sci State Key Lab Urban &

    Reg Ecol Res Ctr Ecoenvironm Sci Beijing 100085 Peoples R China;

    Chinese Acad Agr Sci Dept Honeybee Protect &

    Biosafety Inst Apicultural Res Beijing 100093 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学、安全科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号