首页> 外文学位 >The Ecology of Antibiotic Resistance: Sources and Persistence of Vancomycin-Resistant Enterococci and Antibiotic Resistance Genes in Aquatic Environments
【24h】

The Ecology of Antibiotic Resistance: Sources and Persistence of Vancomycin-Resistant Enterococci and Antibiotic Resistance Genes in Aquatic Environments

机译:抗生素耐药性生态学:水生环境中耐万古霉素的肠球菌和抗生素耐药性基因的来源和持续存在

获取原文
获取原文并翻译 | 示例

摘要

The growing crisis of antibiotic resistance is a major threat to ecosystems and human health. Infections caused by known and emerging antibiotic resistant pathogens are on the rise globally, with approximately 700,000 deaths per year caused by antibiotic resistant bacteria (1). In the United States, infections from antibiotic resistant bacteria cause more than 2 million illnesses and 23,000 deaths (2). Antibiotic resistant bacteria and antibiotic resistance genes are released into aquatic ecosystems through hospital waste, residential sewer lines and animal agricultural waste streams. Animal agriculture accounts for approximately 70% of antibiotic use in the United States (3). In agricultural ecosystems, runoff, land-applied fertilizer and waste lagoons can all contribute to the spread of antibiotic resistance. In urban ecosystems, sewage spills and other wastewater inputs contribute to the spread of antibiotic resistance. Environmental matrices, such as soil and water, can provide habitat, serving as reservoirs to potentially promote the spread of resistance. Research addressing antibiotic resistance primarily focuses on monitoring clinical occurrence and nosocomial infections (acquired in hospitals), but the natural environment also plays a role in the spread of antibiotic resistance. The consequences to aquatic ecosystems are not often studied and not well understood. Antibiotic resistance genes can transfer between bacteria through transduction, transformation and conjugation, potentially persisting in non-pathogenic environmental bacteria. Environmental reservoirs of antibiotics, antibiotic resistant bacteria and antibiotic resistance genes should be considered and integrated into frameworks to improve monitoring, regulation and management of urban and rural watersheds.;The research presented in this doctoral dissertation includes field and laboratory studies designed to assess the prevalence and persistence of antibiotic resistant bacteria and antibiotic resistance genes in aquatic environments, with a focus on vancomycin-resistant enterococci, which are considered a major threat in the United States and top priority pathogens according to the Centers for Disease Control (2). The vanA gene associated with high-level resistance is located on mobile plasmids and associated with clinical infections, predominantly in the species Enterococcus faecium. E. faecium can cause bacteremia, endocarditis, pelvic infections and more (4). When vancomycin, often the last line of treatment for these infections, is no longer effective, the health burdens increase both financially and physically and infections can be fatal.;Chapter 1 summarizes background and review of antibiotic resistance in the environment, including a co-authored review of culture-based methods to detect antibiotic resistant bacteria and antibiotic resistance genes in the environment (previously published in the Journal of Environmental Quality (5). In Chapter 2, a field study was performed to investigate the occurrence and persistence of vancomycin-resistant enterococci and vanA in a sewage spill in Pinellas County, Florida, previously published in the journal Applied and Environmental Microbiology (6). In Chapter 3, antibiotic resistance genes were quantified to study their persistence in poultry litter microcosms (manuscript in prep). In Chapter 4, microcosms were used to assess how nutrients and plasmid-associated vancomycin resistance affect survival among E. faecium strains (in process of submitting for publication at Applied and Environmental Microbiology)..;Antibiotic resistance is a public health crisis and the results of the studies presented here contribute data towards a better understanding of environmental reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. The research has broad implications for public health, environmental policy and ecosystem management.
机译:日益增加的抗生素耐药性危机是对生态系统和人类健康的重大威胁。在全球范围内,由已知和新兴的抗生素抗性病原体引起的感染正在上升,每年约有700,000例抗生素抗性细菌导致死亡(1)。在美国,抗生素抗性细菌的感染导致超过200万种疾病和23,000例死亡(2)。抗生素抗性细菌和抗生素抗性基因通过医院废物,住宅下水道和动物农业废物流释放到水生生态系统中。在美国,畜牧业约占抗生素使用量的70%(3)。在农业生态系统中,径流,土地施用的肥料和废物泻湖都可以促进抗生素耐药性的传播。在城市生态系统中,污水溢出物和其他废水投入物导致了抗生素耐药性的传播。环境基质(例如土壤和水)可以提供栖息地,充当潜在地促进抗药性传播的蓄水池。针对抗生素耐药性的研究主要集中于监测临床发生和医院感染(在医院中获得),但自然环境在抗生素耐药性的传播中也起着作用。对水生生态系统的后果并不经常研究,也没有得到很好的理解。抗生素抗性基因可以通过转导,转化和结合在细菌之间转移,并可能持续存在于非致病性环境细菌中。应考虑抗生素,抗生素抗性细菌和抗生素抗性基因的环境储库,并将其整合到框架中,以改善对城市和农村流域的监测,调控和管理。本博士论文的研究包括旨在评估患病率的野外研究和实验室研究以及水生环境中抗生素抗性细菌和抗生素抗性基因的持久性,重点是耐万古霉素的肠球菌,根据美国疾病控制中心的资料,这被认为是美国的主要威胁和最优先的病原体(2)。与高水平抗性相关的vanA基因位于活动质粒上,并与临床感染相关,主要存在于粪肠球菌中。粪肠球菌可引起菌血症,心内膜炎,骨盆感染等(4)。当万古霉素(通常是这些感染的最后治疗方法)不再有效时,健康负担在经济上和身体上都会增加,并且感染可能是致命的。第1章概述了环境中抗生素耐药性的背景和综述,包括作者基于文化的方法检测环境中的抗生素抗性细菌和抗生素抗性基因的综述(先前发表在《环境质量》杂志上(5)。在第2章中,进行了现场研究以调查万古霉素的发生和持久性)佛罗里达州Pinellas县污水泄漏中的抗性肠球菌和vanA,先前发表在《应用与环境微生物学》杂志上(6)。在第三章中,对抗生素抗性基因进行了定量研究,研究了它们在家禽垫料缩微中的持久性(制备中的手稿)。在第4章中,使用微观世界来评估营养素和质粒相关的万古霉素抗性如何影响生存粪肠球菌(E. faecium)菌株中(正在提交应用和环境微生物学的过程中)。;;抗生素耐药性是一种公共卫生危机,此处提出的研究结果有助于更好地了解抗生素耐药性细菌的环境储层。和抗生素抗性基因。该研究对公共卫生,环境政策和生态系统管理具有广泛的意义。

著录项

  • 作者

    Young, Suzanne M.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Microbiology.;Environmental studies.;Aquatic sciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号