...
首页> 外文期刊>Engineering Fracture Mechanics >Characterization of temperature- and rate-dependent fracture properties of fine aggregate bituminous mixtures using an integrated numerical-experimental approach
【24h】

Characterization of temperature- and rate-dependent fracture properties of fine aggregate bituminous mixtures using an integrated numerical-experimental approach

机译:使用综合数值实验方法表征细聚合沥青混合物的温度和率依赖性裂缝性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper employs an integrated numerical-experimental approach to evaluate the temperature- and rate-dependent fracture characteristics of four fine aggregate bituminous matrices. Two bending tests (semicircular bending, and single-edge notched beam) and one tension test (disk-shaped compact tension) were performed in the laboratory at three temperatures (-10 degrees C, 10 degrees C, and 25 degrees C) and three loading rates (0.5 mm/min, 1.0 min/min, and 2.0 mm/min). The fracture tests were further simulated using a computational model based on the finite element method that is incorporated with material viscoelasticity and cohesive zone fracture. Two cohesive zone fracture parameters, i.e., cohesive strength and fracture energy, were determined via a calibration process between experimental and numerical results. The results obtained indicated that temperature- and rate-dependent fracture characteristics are obvious in viscoelastic bituminous mixtures, and an accurate identification of such characteristics is a key step towards the implementation of successful computational microstructure predictive models. This would lead to core insights into the effects of constituents on the overall mixture performance, with significant savings in experimental costs and time. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文采用综合的数值实验方法来评估四种细骨料沥青矩阵的温度和率依赖性断裂特性。在实验室(-10℃,10℃和25℃)和三个弯曲试验(半圆形弯曲和单边缘切口梁)和一个张力试验(盘形紧凑型张力)和一个张力试验(盘形紧凑型张力)和三个装载速率(0.5毫米/分钟,1.0分钟/分钟和2.0毫米/分钟)。使用基于掺入材料粘弹性和粘性区破裂的有限元方法进一步模拟裂缝试验。通过实验性和数值结果之间的校准过程确定两个粘性区断裂参数,即粘性强度和断裂能量。得到的结果表明,在粘弹性沥青混合物中,温度和速率依赖性裂缝特性显而易见,并且准确地识别这些特性是实现成功计算微观结构预测模型的关键步骤。这将导致核心见解对成分对整体混合性能的影响,实验成本和时间的显着节省。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号