首页> 外文期刊>Energy Technology: Generation,Conversion,Storage,Distribution >Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications
【24h】

Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications

机译:磁热物料滞后设计 - 从应用到应用的基本机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first-order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First-order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change Delta T-ad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first-order magnetocaloric materials such as Ni-Mn-based Heusler alloys, FeRh, La(FeSi)(13)-based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size- and time-dependence of the MCE at magnetostructural transitions.
机译:当施加磁场时,磁性制冷依赖于磁热材料中的大幅熵变化。这种熵改变在施加的磁场引起磁性结构相转变的特定温度周围存在于一阶磁性结构转变,并引起常规或逆磁热效应(MCE)。一阶磁性结构过渡显示出大效果,但涉及过渡滞后,这是阻碍绝热温度变化Delta T-AD的可逆性的损失源。但是,可以为热泵的有效操作需要可逆性。因此,它是历史训练该滞后,这是提前磁热材料的关键挑战。我们在最有前途的一阶磁热材料中审查大型MCE和滞后的起源,例如基于Ni-Mn的HEUSLER合金,FERH,LA(FESI)(13)的化合物,MN3GAC ANTIPEROVSKITE和FE2P化合物。我们讨论了熵变化,磁相互作用,滞后对可逆MCE的影响,以及MCE在磁性结构转变时的尺寸和时间依赖性的显微贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号