首页> 外文期刊>ECS Journal of Solid State Science and Technology >Stability of Excess Oxygen Atoms near Oxide Precipitate and Oxygen Solubility in Silicon Crystal
【24h】

Stability of Excess Oxygen Atoms near Oxide Precipitate and Oxygen Solubility in Silicon Crystal

机译:硅晶体中氧化物沉淀物附近的过量氧原子的稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

The interfacial structure of oxide precipitate and the surrounding Si crystal, OP/Si, has been investigated by focusing on the stability of excess O atoms near the interface in connection with the solubility of O in Si. Excess O atoms become more stable near the interface than those in the interstitial sites in the Si matrix far from the interface. The thickness of the transition layers was at most that of the three Si atomic layer in models through ab initio calculations. Transition layers with a thickness of several nm have been previously detected by electron energy loss spectroscopy (EELS) and modeled for analysis by using the Hakoniwa method. In a lower temperature range, the increase in the ratio of captured interstitial O atoms in a transition layer was expected by lowering the temperature, and the possible range of O solubility in Si in this range was derived. In a higher temperature range, the interface model without transition layers showed that the solubility turns out to be the well-known Arrhenius-type and reproduces the experimental results. And finally, we propose a semi-macroscopic model for the OP/Si interface to explain the previously reported EELS results. (C) 2018 The Electrochemical Society.
机译:通过专注于与Si中的O在溶解的溶解度附近的界面附近的过量O原子的稳定性,研究了氧化物沉淀物和周围的Si晶体OP / Si的界面结构。过量的O原子在界面附近变得更加稳定,而不是SI矩阵中远离界面的间隙位点。通过AB Initio计算的模型中的三种Si原子层的厚度最多是大多数。通过电子能损光谱(EEL)先前检测到厚度为几NM的过渡层,并通过使用Hakoniwa方法进行分析。在较低温度范围内,通过降低温度,预期捕获的间质O原子与过渡层中的捕获间质O原子的增加,并且衍生在该范围内Si中的溶解度的可能范围。在更高的温度范围内,没有过渡层的界面模型表明,溶解度变出是众所周知的Arhenius型并再现实验结果。最后,我们提出了一个半宏观模型,用于OP / SI界面来解释先前报告的EEL结果。 (c)2018年电化学协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号