首页> 外文期刊>International Journal of Solids and Structures >Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse
【24h】

Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse

机译:具有热脉冲的功能梯度CNT增强圆柱板的双曲型导热和热弹性溶液

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

As a first attempt, the combined application of the differential quadrature method (DQM) and the Newton Raphson method is used to solve the non-Fourier heat conduction equations to obtain temperature, displacements, and stresses in a cylindrical panel made of functionally graded, carbon nanotubes (CNTs) reinforced composite. The heat conduction of a domain made of nanocomposites subjected to heat generation is simulated with a finite heat wave speed. Furthermore, based on the three-dimensional elasticity theory, the thermoelastic analysis of the nanocomposite cylindrical panel subjected to the transient heat conduction is presented. The dynamic Young's modulus of Single-Walled Carbon Nanotubes (SWCNT) can be expressed as a function of loading rate and environmental temperature. All material properties such as heat capacity (Cp), thermal relaxation time (tau), density (rho) and thermal conductivity (K) are considered as a function of both temperature and CNT volume fraction. The hyperbolic heat conduction is solved to obtain temperature in the spatial and temporal domains. Then by implementing the obtained temperature in thermoelastic equations of the cylindrical panel, the displacements and stresses will be obtained at each time step. The proposed method marches in the time direction block by block. In each block, there are several time levels, and the numerical results at these time levels are obtained simultaneously. Through this way, the numerical solution at the (n + 1)th time level depends on the solutions at its previous levels from the 1st to the nth levels. The final results in the temporal domain are obtained using the Newton-Raphson method. Accuracy of the present solution is confirmed by comparing with some available results in the literature. A detailed numerical study is conducted to examine the effects of heat wave speed and heat flux, CNT volume fraction and the geometrical parameters on the deflection of the cylindrical panel. (C) 2018 Elsevier Ltd.
机译:作为第一次尝试,使用差分正交方法(DQM)和牛顿Raphson方法的组合应用来解决非傅里叶导热方程以获得温度,位移和由功能分级,碳的圆柱形面板中的圆柱形面板中的应力纳米管(CNT)增强复合材料。用有限热波速模拟由经受发热的纳米复合材料制成的畴的热传导。此外,基于三维弹性理论,提出了经受瞬态导热的纳米复合圆柱板的热弹性分析。单壁碳纳米管(SWCNT)的动态杨氏模量可以表示为负载率和环境温度的函数。诸如热容量(CP),热弛豫时间(TAU),密度(RHO)和导热率(K)的所有材料特性被认为是温度和CNT体积分数的函数。求解双曲线热传导以获得空间和颞座的温度。然后通过在圆柱形面板的热弹性方程中实现所获得的温度,将在每次步骤中获得位移和应力。所提出的方法通过块进行时间方向块。在每个块中,有几个时间级别,并且同时获得这些时间级的数值结果。通过这种方式,(n + 1)时间级别的数值解决方案取决于其先前级别的溶液从第一个到第n级。使用牛顿-Raphson方法获得时间域中的最终结果。通过与文献中的一些可用结果进行比较,确认本溶液的准确性。进行了详细的数值研究以检查热波速度和热通量,CNT体积分数和几何参数对圆柱板的偏转的影响。 (c)2018年elestvier有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号