首页> 外文期刊>International Journal of Thermal Sciences >A unique technique for analytical solution of 2-D dual phase lag bio-heat transfer problem with generalized time-dependent boundary conditions
【24h】

A unique technique for analytical solution of 2-D dual phase lag bio-heat transfer problem with generalized time-dependent boundary conditions

机译:具有广义时间依赖性边界条件的2-D双相滞后生物传热问题的一种独特技术

获取原文
获取原文并翻译 | 示例
           

摘要

The eigenfunction-based solutions for various heat conduction models (Fourier and non-Fourier) exhibit mismatch at the boundaries due to the discrepancy between the boundary conditions (BCs) and the corresponding eigenfunction profiles. This mismatch leads to spurious oscillations and erroneous solutions near the boundaries. Recently developed finite integral transform (FIT) based analytical solution of the dual phase lag (DPL) bio-heat transfer problem with generalized time-dependent BCs in a 2-D planar skin tissue phantom also encounters the similar mismatch, especially for Dirichlet BCs. The present study aims at removing such mismatch from eigenfunction-based solutions, by the homogenization of generalized time-dependent BCs which is essentially carried out by subtracting an auxiliary function from the temperature of the domain of interest. This novel treatment yields a modified problem in terms of the modified temperature with homogeneous BCs and contains a modified source. For this, the above-mentioned auxiliary functions need to satisfy a set of conditions at the boundaries. However, the functions satisfying such conditions may not be unique. Therefore, an additional condition (pseudo-steady state condition) is imposed with a view to obtaining relatively simple, unique auxiliary functions. The current study also explores the homogenization process for 2-D bio-heat transfer problem for the tissue phantom in conjunction with the use of orthogonal eigenfunction expansion method (OEEM). The present developed solution approach is demonstrated using two test problems comprising of (a) constant surface temperature and (b) sinusoidal heat flux on the surface, respectively. In case of constant surface temperature, the present approach gets rid of large spurious oscillations near the boundary. In case of surface heat flux, temperature prediction by the present approach shows good agreement in the domain compare to that predicted by the FIT approach. Besides that, the flux distribution predicted on the boundary by present approach is a realistic non-zero value, whereas, the FIT approach produces zero heat flux for the same applied non-zero heat flux at the boundary. Moreover, for both the test problems, the developed novel approach facilitates significant reduction in number of terms in the series summation as compared to the corresponding FIT solutions, for the same level of accuracy.
机译:由于边界条件(BCS)与相应的特征功能之间的差异,各种导热模型(傅立叶和非傅里叶)的基于特征功能的解决方案在边界上表现出不匹配。这种不匹配导致虚假的振荡和近距离的错误解决方案。最近开发了基于有限的整体变换(适合)的双相滞后的分析解(DPL)生物传热问题,在2-D平面皮肤组织中的广义时间依赖性BCS,也遇到了类似的错配,特别是对于Dirichlet BCS。本研究旨在通过通过从感兴趣领域的温度减去辅助功能,从基于特征函数的基于特征函数的解除的均匀化的均质化。这种新颖的处理在具有均匀BCS的改性温度方面产生修饰的问题并含有改进的源。为此,上述辅助功能需要满足边界的一组条件。然而,满足这种条件的功能可能不是唯一的。因此,施加另外的条件(伪稳态条件)以获得相对简单,唯一辅助功能的视图。目前的研究还探讨了组织幻像的2-D生物传热问题的均质化过程,结合使用正交特征膨胀方法(OEEM)。使用两种测试问题证明了本发达的解决方案方法,其两个测试问题分别包括(a)恒定表面温度和(b)表面上的正弦热通量。在恒定表面温度的情况下,本方法在边界附近摆脱了大的虚假振荡。在表面热通量的情况下,目前方法的温度预测显示了域中的良好一致性,比较由拟合方法预测的域。此外,通过当前方法在边界上预测的磁通量分布是逼真的非零值,而拟合方法在边界处产生相同应用的非零热通量的零热量通量。此外,对于测试问题,与相应的拟合解决方案相比,开发的新方法促进了系列求和的术语数量显着降低,相同的拟合解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号