...
【24h】

Distributed learning automata-based scheme for classification using novel pursuit scheme

机译:基于学习自动机的分布式分类,采用新型追求方案进行分类

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Learning Automata (LA) is a popular decision making mechanism to "determine the optimal action out of a set of allowable actions" (Agache and Oommen, IEEE Trans Syst Man Cybern-Part B Cybern 2002(6): 738-749, 2002). The distinguishing characteristic of automata-based learning is that the search for the optimising parameter vector is conducted in the space of probability distributions defined over the parameter space, rather than in the parameter space itself (Thathachar and Sastry, IEEE Trans Syst Man Cybern-Part B Cybern 32(6): 711-722, 2002). Recently, Goodwin and Yazidi pioneered the use of Ant Colony Optimisation (ACO) for solving classification problems (Goodwin and Yazidi 2016). In this paper, we propose a novel classifier based on the theory of LA. The classification problem is formulated as a deterministic optimization problem involving a team of LA that operate collectively to optimize an objective function. Although many LA algorithms have been devised in the literature, those LA schemes are not able to solve deterministic optimization problems as they suppose that the environment is stochastic. In this paper, we develop a novel pursuit LA which can be seen as the counterpart of the family of pursuit LA developed for stochastic environments (Agache and Oommen, IEEE Trans Syst Man Cybern Part B Cybern 32(6): 738-749, 2002). While classical pursuit LA are able to pursue the action with the highest reward estimate, our pursuit LA rather pursues the collection of actions that yield the highest performance. The theoretical analysis of the pursuit scheme does not follow classical LA proofs and can pave the way towards more schemes where LA can be applied to solve deterministic optimization problems. When applied to classification, the essence of our scheme is to search for a separator in the feature space by imposing a LA based random walk in a grid system. To each node in the gird we attach an LA, whose actions are the choice of the edges forming the separator. The walk is self-enclosing, i.e., a new random walk is started whenever the walker returns to starting node forming a closed classification path yielding a multiedged polygon. In our approach, the different LA attached at the different nodes search for a polygon that best encircles and separates each class. Based on the obtained polygons, we perform classification by labelling items encircled by a polygon as part of a class using ray casting function. Seen from a methodological perspective, PolyPursuit-LA has appealing properties compared to SVM. In fact, unlike PolyPursuit-LA, the SVM performance is dependent on the right choice of kernel function (e.g. Linear Kernel, Gaussian Kernel)- which is considered a "black art". PolyPursuit-LA can find arbitrarily complex separators in the feature space. Experimental results from both synthetic and real-life data show that our scheme is able to perfectly separate both simple and complex patterns outperforming existing classifiers, including polynomial and linear SVM, without the need of any "kernel trick". We believe that the results are impressive given the simplicity of PolyPursuit-LA compared to other approaches such as SVM.
机译:学习自动机(LA)是一种流行的决策机制,“确定了一套允许行动中的最佳动作”(agape和oommen,IEEE Trans Syst Man Cyber​​n-Part B部分2002(6):738-749,2002) 。基于自动机的学习的区别特性是在参数空间定义的概率分布的空间中进行优化参数向量的搜索,而不是在参数空间本身(Chachar和Sastry,IEEE Trans Syst Man Cyber​​ N部分B Cyber​​ N 32(6):711-722,2002)。最近,Goodwin和Yazidi开创了使用蚁群优化(ACO)来解决分类问题(Goodwin和Yazidi 2016)。在本文中,我们提出了一种基于LA理论的新型分类器。分类问题被制定为一个确定性优化问题,涉及一个团队,共同优化目标函数。尽管在文献中已经设计了许多LA算法,但是那些LA计划无法解决确定性的优化问题,因为它们认为环境是随机的。在本文中,我们开发了一种新的追求洛杉矶,可以被视为为随机环境开发的追捕洛杉矶的对应物(Agape和Oommen,IEEE Trans Syst Man Cyber​​ B部分(6):738-749,2002 )。虽然古典追求洛杉矶能够以最高的奖励估计追求行动,但我们的追求洛杉矶相当追求收益的行动,以产生最高的绩效。追求方案的理论分析不遵循经典的LA证据,可以铺平更多方案,其中可以应用LA解决确定性优化问题。当应用于分类时,我们的方案的本质是通过在网格系统中施加基于LA随机步行来搜索特征空间中的分隔符。对于GIRD中的每个节点,我们附加LA,其操作是形成分离器的边缘的选择。步行是自我封闭的,即,只要步行者返回到开始节点的开始节点,就会开始新的随机步行,形成一个闭合的分类路径,产生多边形的多边形。在我们的方法中,在不同节点上附加的不同LA搜索最佳环节并分隔每个类的多边形。基于所获得的多边形,我们通过用光线铸造函数标记由多边形标记包环绕的项目来进行分类。从方法的角度看,与SVM相比,Polypsuit-La具有吸引性的性质。实际上,与PolyPUssuit -La不同,SVM性能取决于内核功能的正确选择(例如,线性内核,高斯内核) - 被认为是“黑色艺术”。 Polypursuit-La可以在特征空间中找到任意复杂的分离器。合成和现实生活数据的实验结果表明,我们的方案能够完全分离两种简单和复杂的模式,优于现有的分类器,包括多项式和线性SVM,而无需任何“内核诀窍”。我们认为,鉴于Polypursuit-La的简单性与如SVM等其他方法相比,结果令人印象深刻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号