首页> 外文期刊>International Journal of Pressure Vessels and Piping >A process-structure-property model for welding of 9Cr power plant components: The influence of welding process temperatures on in-service cyclic plasticity response
【24h】

A process-structure-property model for welding of 9Cr power plant components: The influence of welding process temperatures on in-service cyclic plasticity response

机译:9CR发电厂组件焊接过程 - 结构 - 结构性能模型:焊接过程温度对锻炼循环可塑性反应的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A process-structure-property methodology is presented for welding of 9Cr steels under representative flexible operating conditions for a typical thermal power plant girth-welded pipe. The welding-induced evolution of microstructural variables is represented via (i) a solid-state phase transformation model for martensite-austenite transformation and (ii) empirical equations for prior austenite grain size, martensite lath width, hardness and M23C6 precipitate diameter and area fraction, calibrated from published heat treatment data. The temperature-dependent, physically-based, unified viscoplastic constitutive model, which includes a fatigue damage initiation criterion, is based on dislocation density evolution and is validated against high temperature cyclic plasticity data at a range of relevant temperatures for parent material P91, including combined isotropic-kinematic hardening effects. This model is shown to successfully predict weld-life reduction factor for cross-weld tests. The effects of key welding process variables on the microstructure gradient in the heat-affected zone, and associated thermo-mechanical, cyclic plasticity response are assessed. The inter-critical and fine-grained heat-affected zones are identified as the critical regions, consistent with observed plant experience. Increasing post-weld heat-treatment temperature from 760 degrees C to 780 degrees C is predicted to be detrimental due to increased precipitate coarsening. In contrast, increasing preheat and interpass temperature from 350 degrees C to 400 degrees C is predicted to be beneficial due to increased hardness in the critical regions.
机译:在典型的热电厂围绕焊接管的代表性柔性操作条件下,提出了一种流程结构 - 性能方法。微结构变量的焊接诱导的展现通过(i)用于马氏体 - 奥氏体转化的固态相变模型和(ii)用于先前奥氏体晶粒尺寸的经验方程,马氏体板岩宽度,硬度和M23C6沉淀直径和面积分数从发布的热处理数据校准。包括疲劳损伤起始标准的温度依赖性,物理统一的粘塑料本构型模型基于位错密度进化,并在母材P91的一系列相关温度下验证了高温循环可塑性数据,包括组合各向同性 - 运动型硬化效应。该模型显示成功地预测跨焊接测试的焊接寿命减少因子。评估关键焊接过程变量对热影响区域中的微观结构梯度的影响,以及相关的热机械循环塑性响应。临界间和细粒度的热影响的区域被鉴定为关键区域,与观察到的植物经验一致。由于增加沉淀粗化,将焊接后热处理温度从760摄氏度增加到760℃至780摄氏度增加。相反,由于临界区域中的硬度增加,预测预测从350℃至400摄氏度增加到350摄氏度至400摄氏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号