首页> 外文期刊>International Journal of Plasticity >Microstructural and micromechanical evolution during dynamic recrystallization
【24h】

Microstructural and micromechanical evolution during dynamic recrystallization

机译:动态再结晶过程中的微观和微机械演变

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic recrystallization (DRX) can in principle serve as an alternative way of controlling grain structure via a single route of hot working instead of the traditional cold working followed by annealing at elevated temperatures; in reality, its widespread application is hindered by the lack of quantitative understanding and prediction of the process. Using a recently developed model (Zhao et al., 2016) that integrates a fast Fourier transform-based elasto-viscoplastic model and a phase-field recrystallization model, we investigate the evolution of both microstructural and micromechanical fields in polycrystal copper during uniaxial compression at various elevated temperatures. Quantitative analysis based on the simulation results confirms that stress redistribution upon the formation of a new grain can significantly lower the dislocation density of neighboring grains, leading the so-called "DRX-enhanced recovery", while the new grain itself undergoes accelerated work hardening as compared to the matrix. Numerical analysis using current simulation data reveals a macroscopic kinetic equation describing the average dislocation density evolution during DRX softening. The critical strain for the onset of DRX and the Zener-Hollomon parameter are found to obey a power law, with the model predicted exponent being consistent with that found in experiments. Temperature-dependence of the Avrami exponents have also been predicted using the simulation data, which agrees with the experimental finding. The population of grain boundaries and triple and quadruple junctions are shown to evolve with deformation and be temperature-dependent. (C) 2017 Elsevier Ltd. All rights reserved.
机译:动态再结晶(DRX)原则上可以作为通过单个热工作而不是传统的冷加工来控制晶粒结构的替代方式,然后在高温下退火;实际上,其广泛的应用受到缺乏量化的理解和对过程的预测。使用最近开发的模型(Zhao等,2016),它集成了快速傅里叶变换的弹性粘塑料模型和相场再结晶模型,我们研究了在单轴压缩过程中多晶铜中微观结构和微机械领域的演变各种升高的温度。基于仿真结果的定量分析证实,在形成新谷物的形成时,应力再分布可以显着降低邻近谷物的位错密度,导致所谓的“DRX增强恢复”,而新谷物本身经历加速加速工作与矩阵相比。使用电流模拟数据的数值分析显示了描述DRX软化期间平均位错密度演化的宏观动力学方程。发现DRX和ZENER-HOLLOMON参数发作的临界应变遵守权力法,该模型预测指数与实验中发现的模型一致。使用模拟数据也预测了AVRAMI指令的温度依赖性,这与实验结果一致。显示晶界和三倍和四倍连接的群体以变形而发展,并依赖于温度。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号