首页> 外文期刊>Materials Science and Engineering >Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex lightweight steel
【24h】

Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex lightweight steel

机译:金属间化 - 硬化双面轻质钢热变形过程中动态微结构演化与再结晶机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Dynamic microstructural evolution and recrystallization mechanism during hot deformation of intermetallic-hardened duplex Fe-9Al-10.8Mn-4.5Ni-0.7C (wt.%) lightweight steel have been comprehensively examined at various deformation temperatures at a fixed strain rate of 0.001 s~(-1). The flow curves are predicted employing Avrami exponent obtained from the strain dependent Johnson-Mehl-Avrami-Kolmogorov relation, which is further corroborated with the dynamic microstructural response. A detailed analysis of the intermetallic precipitates and elemental partitioning in both the ferrite and austenite phases are performed. The ferrite matrix having uniformly distributed nano-sized B2 (NiAl) precipitates has a higher micro-hardness as compared to the austenite matrix, which corroborates the strain partitioning in the austenite phase during hot deformation. Two distinct restoration mechanisms are observed in this alloy viz. continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) following hot deformation. The CDRX mechanism in the ferrite and austenite phase is characterised by the progressive misorientation development of subgrains into high-angle boundary during straining. The ferrite phase is associated with CDRX mechanism at all the deformation temperatures (1223-1423 K) albeit DDRX-like mechanism, facilitated by austenite/ferrite interphase is found to be an assisting mechanism towards the higher temperatures (1323-1423 K). The austenite phase, on the other hand, exhibits DDRX mechanism during the initial stage and dominant CDRX at the later stage of deformation at lower temperature (1223-1323 K). With the increasing deformation temperature to 1423 K, the dissolution of boundary-B2 precipitates in austenite facilitates the boundary migration, thus promoting the DDRX accompanied by the twinning in this phase.
机译:在金属间化合物 - 硬化双相FE-9AL-10.8MN-4.5NI-0.7C(WT.%)在各种变形温度下以0.001秒的固定应变率全面检查轻质钢的热变形过程中的动态微结构进化和再结晶机理。 (-1)。预测流程曲线采用从应变依赖的Johnson-Mehl-Avrami-Kolmogorov关系获得的Avrami指数,其进一步用动态微结构响应进行了态化。进行了对金属间质沉淀物和在铁素体和奥氏体相中进行元素分配的详细分析。与奥氏体基质相比,具有均匀分布的纳米大小B2(NIAl)沉淀物的铁氧体基质具有更高的微硬度,其在热变形期间证实了奥氏体相中的菌株分配。在该合金viz中观察到两个不同的修复机制。在热变形后连续动态再结晶(CDRX)和不连续的动态再结晶(DDRX)。铁素体和奥氏体相中的CDRX机制的特征在于在紧张期间将逐渐对大角度边界进行的逐步的错误发展。铁氧体相对于所有变形温度(1223-1423k)的CDRX机构有关(1223-1423k),虽然是DDRX样机制,发现通过奥氏体/铁氧体间相互作用促进是朝向较高温度的辅助机制(1323-1423k)。另一方面,奥氏体相在初始阶段和显性CDRX期间在较低温度下的变形阶段(1223-1323k),在初始阶段和显性CDRX中表现出DDRX机制。随着变形温度的增加至1423k,奥氏体中边界-B2沉淀物的溶解促进了边界迁移,从而促进了在该阶段孪生的DDRX。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号