...
首页> 外文期刊>International Journal of Mechanical Sciences >A regularized force-based Timoshenko fiber element including flexure-shear interaction for cyclic analysis of RC structures
【24h】

A regularized force-based Timoshenko fiber element including flexure-shear interaction for cyclic analysis of RC structures

机译:基于基于力的Timoshenko纤维元件,包括用于RC结构的循环分析的挠性剪切相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Reinforced concrete (RC) columns are the most critical structural components in buildings/bridges. For those with small span-to-depth ratios and/or insufficient transverse reinforcing details, it will suffer from shear type or flexure-shear type failure modes, which are challenge to be represented in numerical simulation. For instance, conventional fiber element employs the Euler Bernoulli beam theory which neglects the shear deformation, thus it will over-estimate the structural responses of flexure-shear and shear-critical columns. This paper presents a new fiber element to include the flexure-shear interaction for cyclic analysis of RC structures. The element adopts a force-based formulation and extends the original fiber element from the Euler-Bernoulli theory basis to the Timoshenko theory basis by introducing shear deformations at the section level. Then the multi-axial softened damage-plasticity model is used for concrete fibers and the uniaxial modified Menegotto Pinto model is used for reinforcement fibers. The concrete-steel coupling effect that is typical for reinforced concrete subjected to shear, i.e., tension-stiffening and compression softening, are also considered through modifying the material constitutive laws. To overcome the difficulties in force-based element state determination and enhance the computational efficiency, the non-iterative state determination strategy is adopted for the element implementation. Meanwhile, to avoid the localization issue (i.e., integration point-dependency) arising from strain-softening behavior, an interpolatory quadrature is used for the numerical integration of the element. Finally, the element is validated through numerical simulations of a series of column tests under cyclic loadings. The results indicate that the element can retain the performance in modeling flexure-critical columns as conventional Euler Bernoulli fiber element, while demonstrating significant superiors in modeling flexure-shear and shear-critical columns.
机译:钢筋混凝土(RC)柱是建筑物/桥梁中最关键的结构部件。对于具有小跨度的跨度比率和/或横向增强细节不足的人,它将遭受剪切型或挠性剪切型失效模式,这是在数值模拟中表示的挑战。例如,传统的纤维元件采用欧拉伯努利光束理论,其忽略了剪切变形,因此它会过度估计挠性剪切和剪切柱的结构响应。本文呈现了一种新的纤维元件,包括用于RC结构的循环分析的挠曲剪切相互作用。该元件采用基于力的配方,通过在截面级别引入剪切变形来延伸到欧拉-Bernoulli理论基础上的原始纤维元件。然后,多轴软化的损坏塑性模型用于混凝土纤维,单轴改性Menegotto Pinto模型用于增强纤维。通过改变材料本构规定,还考虑了对剪切进行剪切的钢筋混凝土典型的混凝土钢耦合效果。为了克服基于力的元素状态的困难确定并提高计算效率,采用了非迭代状态确定策略来实现元素实现。同时,为了避免由应变软化行为产生的本地化问题(即,集成点依赖性),用于元素的数值积分使用间隔正交。最后,通过在循环负载下的一系列列测试的数值模拟来验证该元素。结果表明,该元件可以在以常规欧拉伯努利纤维元件建模弯曲临界柱中的性能,同时在建模挠性剪切和剪切柱柱中展示有效上级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号