首页> 外文期刊>International Journal of Mechanical Sciences >Experimental and numerical study on the deformation mechanism of straight flanging by incremental sheet forming
【24h】

Experimental and numerical study on the deformation mechanism of straight flanging by incremental sheet forming

机译:增量板成型直率的变形机理的实验与数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

The geometric accuracy is a key quality indicator for the application of flanging by incremental sheet forming (ISF), namely incremental flanging (IF). As a local loading forming process, the deformation process in IF is different from that in conventional flanging formed by press-working operation in which considerable geometric error can be introduced. Thereby, the deformation process of straight flanging by ISF is investigated through both experimental and numerical simulation approaches. First, the effects of different yield functions (Mises and Hill48) and hardening models (A-F, isotropic and kinematic) on the prediction accuracy are investigated. In particular, the Hill48 yield function is not only solved by r-values, but also calibrated by material properties of strain states corresponding to the actual deformation condition of straight flanging by ISF. Among different yield functions, calibrated methods and hardening models, a A-F hardening model with the calibrated Hill48 yield function is found to have the best performance in terms of prediction accuracy of both forming force and cross-section profile. Then, based on this model, the deformation process of the straight flanging by ISF is analyzed. The results show that the strain states of straight flanging by ISF are plane and uniaxial tension strain states. In the forming process of straight flanging by ISF, the whole blank experiences bending-unbending deformation in which the material contacting with the die undergoes reverse loading. In addition, the main deformation modes of straight flanging are bending and stretch deformation through internal energy analysis. Finally, the deformation process of the straight flanging by ISF is theoretical analyzed. It is found that the elastic moment in the reverse loading mode is the main source for geometric error of the straight wall.
机译:几何精度是通过增量板形成(ISF)的旋转的主要质量指示器,即增量法兰(IF)。作为局部装载形成过程,IF的变形过程与通过压力加工操作形成的传统燃料中的变形过程不同,其中可以引入相当大的几何误差。由此,通过实验和数值模拟方法研究了通过ISF直率的变形过程。首先,研究了不同产量函数(MISES和HILL48)和硬化模型(A-F,各向同性和运动)对预测精度的影响。特别地,Hill48产量功能不仅通过R值来解决,而且还通过对应于ISF的直率的实际变形条件的应变状态的材料特性校准。在不同的产量函数中,校准的方法和硬化模型,发现具有校准山坡48屈服功能的A-F硬化模型在成形力和横截面轮廓的预测精度方面具有最佳性能。然后,基于该模型,分析了ISF的直率的变形过程。结果表明,ISF的直率凸出的应变状态是平面和单轴张力应变状态。在通过ISF的直率旋转的成形过程中,整个空白经验弯曲 - 不屈的变形,其中与模具接触的材料经历反向负载。另外,通过内部能量分析,直率的主变形模式是弯曲和拉伸变形。最后,ISF通过ISF的直率变形过程是理论分析的。结果发现反向加载模式中的弹性力矩是直壁的几何误差的主要源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号