首页> 外文学位 >Multi-scale effects on deformation mechanisms of polymer nanocomposites: Experimental characterisation and numerical study.
【24h】

Multi-scale effects on deformation mechanisms of polymer nanocomposites: Experimental characterisation and numerical study.

机译:多尺度效应对聚合物纳米复合材料变形机理的影响:实验表征和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

In order to make much stiffer, light weight and high performance material products, polymer nanocomposites play an emerging role in the material innovation. Unlike other thermoplastics, polymer nanocomposites are fabricated by introducing a small amount of solid nano-scale fillers (normally less than 5 wt%) such as nanoclay, carbon nanotubes or nanofibres into a plastic resin to dramatically enhance its stiffness, strength and thermal properties. The difference between nanocomposites and conventional fibre composites is that the added fillers are extremely small, only one-millionth of a millimetre thick, and provide a much larger interface area per unit volume for greatly improving the interfacial bonding effect between nanofillers and the polymer matrix.;More importantly, polypropylene (PP)/clay nanocomposites have quite a high potential to form such innovative materials and replace the conventional plastics in many automotive and packaging applications. Nevertheless, the growth of PP/clay nanocomposites faces an obstacle of hydrophobic polymer's low interactions with hydrophilic clay. Maleic anhydride (MA) grafted PP (MAPP), commonly used as a compatibiliser, has been proven to facilitate a good clay dispersion within the PP matrix through its functionalised MA groups. But despite the great attention from the manufacturers and researchers in recent years, commercial PP/clay nanocomposites with reliable material properties are still limited in availability. The major problem stems from the complex influences of the material selection and processing methods.;The present work developed a comprehensive approach from the material formulation and processing, experimental characterisation to the numerical modelling of PP/clay nanocomposites based on the finite element analysis (FEA) of micro/nanostructures. Initially, effects of the material selection including the clay type and content, MAPP content and PP matrix viscosity were investigated for the mechanical property enhancement of PP/clay nanocomposites. These nanocomposites were prepared using twin screw extrusion and injection moulding processes with a well-known Taguchi design of experiments (DoE) method in order to statistically detect the significant factors for influencing their mechanical properties. The preferred material formulations were then determined by Pareto analysis of variance (ANOVA) with the technical and economic considerations. The fundamental material characterisation was also conducted on those formulated nanocomposites using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Overall mechanical properties of neat PP and corresponding nanocomposites were determined by the general tensile, flexural and impact tests. Finally, computational models were established by implementing both the representative volume element (RVE) technique and innovative object-oriented finite element (OOF) analysis to predict the tensile moduli of PP/clay nanocomposites in comparison to the experimental data and available composites theoretical models.
机译:为了制造更硬,更轻和高性能的材料产品,聚合物纳米复合材料在材料创新中起着新兴的作用。与其他热塑性塑料不同,聚合物纳米复合材料是通过将少量的固体纳米级填料(通常小于5 wt%)(例如纳米粘土,碳纳米管或纳米纤维)引入塑料树脂中来显着提高其刚度,强度和热性能而制成的。纳米复合材料与常规纤维复合材料之间的区别在于,所添加的填料非常小,仅百万分之一毫米厚,并且每单位体积的界面面积大得多,从而大大提高了纳米填料与聚合物基体之间的界面粘合效果。 ;更重要的是,聚丙烯(PP)/粘土纳米复合材料在许多汽车和包装应用中具有形成此类创新材料并替代传统塑料的巨大潜力。然而,PP /粘土纳米复合材料的生长面临疏水聚合物与亲水性粘土低相互作用的障碍。事实证明,通常用作相容剂的马来酸酐(MA)接枝PP(MAPP)可通过其官能化的MA基团促进在PP基体中良好的粘土分散性。但是,尽管近年来制造商和研究人员给予了极大的关注,但具有可靠材料性能的商用PP /粘土纳米复合材料的可用性仍然受到限制。主要问题来自于材料选择和加工方法的复杂影响。;本工作开发了一种基于有限元分析(FEA)的方法,从材料的配方和加工,实验表征到PP /粘土纳米复合材料的数值建模。 )的微观/纳米结构。最初,研究了包括粘土类型和含量,MAPP含量以及PP基体粘度在内的材料选择对提高PP /粘土纳米复合材料力学性能的影响。这些纳米复合材料是使用双螺杆挤出和注射成型工艺以及著名的Taguchi实验设计(DoE)方法制备的,目的是统计检测影响其机械性能的重要因素。然后考虑技术和经济因素,通过帕累托方差分析(ANOVA)确定首选的材料配方。还使用X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),差示扫描量热法(DSC)和动态机械热分析(DMTA)对那些配制的纳米复合材料进行了基本的材料表征。纯聚丙烯和相应的纳米复合材料的总体机械性能由一般的拉伸,弯曲和冲击试验确定。最后,通过与实验数据和可用的复合材料理论模型相比较,通过实施代表性体积元素(RVE)技术和创新的面向对象的有限元(OOF)分析来预测PP /粘土纳米复合材料的拉伸模量,从而建立计算模型。

著录项

  • 作者

    Dong, Yu.;

  • 作者单位

    The University of Auckland (New Zealand).;

  • 授予单位 The University of Auckland (New Zealand).;
  • 学科 Chemistry Polymer.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号