首页> 外文学位 >Deformation mechanisms in polymer-clay nanocomposites.
【24h】

Deformation mechanisms in polymer-clay nanocomposites.

机译:聚合物-粘土纳米复合材料的变形机理。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale control of structure in polymer nanocomposites is critical for their performance but has been difficult to investigate systematically due to lack of suitable experimental model. This thesis investigated roles of various structural parameters in layered polymer-montmorillonite (MTM) clay nanocomposites manufactured using a layer-by-layer (LBL) technique. A continuum-based constitutive model was developed to predict the stress-strain response of the nanocomposites at low strain-rates.;The systematic control over the nano-structure using the LBL method allowed an investigation of role of parameters like nanoparticle volume fraction, nanoparticle layer separation, nanoparticle layer stratification and interface between the polymer and nanoparticles. A series of polyurethane (PU)-MTM nanocomposites with a wide range of volume fractions of MTM nanoparticles was manufactured by varying the MTM layer separation. The nanocomposites demonstrated an increasing yield strength and stiffness with increased MTM volume fraction. A transition from ductile to brittle behavior was observed at a high volume fraction of nanoparticles and a critical nanoparticle separation was found to exist, below which brittle behavior dominated the response of the nanocomposites. The presence of nanoparticle stratified layer was believed to provide an additional slip mechanism, resulting in increased ductility. The interface between the polymer and the nanoparticle layers was altered by incorporating polyacrylic acid (PAA) using an exponential (e)-LBL method. The presence of a stronger interface resulted in enhanced stiffness and strength in the nanocomposites.;For the development of the constitutive model, the nanocomposite volume was assumed to be occupied by multi-layers of bulk polymer and effective particles consisting of MTM layers and a modified PU interphase region in proximity to MTM layers. A hyperelastic model was used to capture the response of bulk polymer. The effective particle component of the model consisted of a linear elastic spring, a viscoplastic dash-pot and a non-linear spring element to capture the initial elastic response, yield strength and strain-hardening response, respectively. The model predicted all the major features of the uniaxial stress-strain constitutive response of a family of PU-MTM nanocomposites, thus confirming the efficacy of the proposed constitutive model.
机译:聚合物纳米复合材料的结构的纳米级控制对其性能至关重要,但由于缺乏合适的实验模型而难以进行系统的研究。本文研究了各种结构参数在使用层层(LBL)技术制造的层状聚合物-蒙脱土(MTM)粘土纳米复合材料中的作用。建立了基于连续体的本构模型,以预测低应变速率下纳米复合材料的应力-应变响应。使用LBL方法对纳米结构进行系统控制,可以研究纳米颗粒体积分数,纳米颗粒等参数的作用层分离,纳米颗粒层分层以及聚合物和纳米颗粒之间的界面。通过改变MTM层的间距,可以制造出一系列具有广泛体积分数的MTM纳米颗粒的聚氨酯(PU)-MTM纳米复合材料。纳米复合材料显示出随着MTM体积分数的增加而增加的屈服强度和刚度。在纳米颗粒的高体积分数下观察到了从延展性到脆性行为的转变,并且发现存在临界纳米颗粒分离,在此之下,脆性行为主导了纳米复合材料的响应。据信,纳米颗粒分层层的存在提供了另外的滑动机理,导致延展性增加。通过使用指数(e)-LBL方法掺入聚丙烯酸(PAA),可以改变聚合物和纳米颗粒层之间的界面。较强的界面的存在导致纳米复合材料的刚度和强度增强。;对于本构模型的开发,假定纳米复合材料的体积被多层本体聚合物和由MTM层和改性后组成的有效颗粒占据。接近MTM层的PU相间区域。使用超弹性模型来捕获本体聚合物的响应。该模型的有效颗粒成分由线性弹性弹簧,粘塑性阻尼罐和非线性弹簧元件组成,分别捕获初始弹性响应,屈服强度和应变硬化响应。该模型预测了PU-MTM纳米复合材料家族的单轴应力-应变本构响应的所有主要特征,从而证实了所提出本构模型的有效性。

著录项

  • 作者

    Kaushik, Amit K.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号