首页> 外文期刊>International Journal of Mechanical Sciences >Wave propagation in microtubule-based bio-nano-architected networks: A lesson from nature
【24h】

Wave propagation in microtubule-based bio-nano-architected networks: A lesson from nature

机译:基于微管的生物纳米架构网络中的波传播:自然界的课程

获取原文
获取原文并翻译 | 示例
           

摘要

Microtubules, bio-polymeric hollow tubes forming entangled radial networks from the nucleus to the cell membrane, are considered the main part of the cytoskeleton providing mechanical stiffness, organization and shape for the cytoplasm of the eukaryotic cells and playing substantial roles in some cellular processes such as mechanotransduction, cell division, intercellular transports, internal organization of the cell components, etc. In all of the mentioned functions, the network structure of the microtubules has the main responsibility proving the importance of more in-depth studies of their mechanical properties. This paper addresses the elastic wave propagation in various two-dimensional microtubule-based bio-nano-architected periodic networks to analyze their dynamic characteristics for possible further utilizations. The study starts with selecting a proper beam model for a single microtubule, as proved by previous experiments, and continues with creating ten widely used periodic structures, namely square, triangle, triangle-square, triangle-diamond, negative Poisson's ratio, semi-honeycomb, star-honeycomb, zig-zag, hexagram, and Sierpinski triangle, thereof. To obtain the dispersion curves, finite element models are developed for both individual and networked microtubules, and the phononic band structures are calculated based on Bloch's theorem. The results reveal the possibility of designing bandgaps in specific ranges for the low- and high-frequency bio-filter applications depending on the topologies of the selected unit cells as well as the considered periodicities. This application helps researchers control the ways to absorb some unwanted or hazardous vibrations using architected periodic structures and, thanks to the higher biocompatibility resulted from their biomaterial origin, the networks can be applied in next-generation nano-biomechanical instruments such as implantable biosensors.
机译:微管,形成从细胞核的缠结径向网络的生物聚合物空心管被认为是细胞骨架的主要部分,为真核细胞的细胞质提供机械刚度,组织和形状,并在一些细胞过程中起着大量作用作为机械调整,细胞分裂,细胞间转运,细胞组件的内部组织等。在所有提到的功能中,微管的网络结构具有证明更深入研究其机械性能的重要性。本文解决了各种二维微管的生物纳米架 - 架构的周期性网络中的弹性波传播,以分析它们的动态特征,以进一步利用。该研究开始为单个微管的选择适当的光束模型,如先前的实验所证明,并继续创建十种广泛使用的周期性结构,即广场,三角形,三角形,三角形 - 钻石,负泊松比,半蜂窝,星形 - 蜂窝,锯齿,六角形和塞彼得斯基三角形。为了获得色散曲线,为个人和网络的微管开发有限元模型,并且基于Bloch的定理计算声子带结构。结果揭示了根据所选单元电池的拓扑以及所考虑的周期性的低频和高频生物滤波器应用在特定范围内设计带隙的可能性。该应用有助于研究人员使用架构的周期性结构来控制吸收一些不需要或危险振动的方法,并且由于其生物材料来源导致的较高的生物相容性,网络可以应用于下一代纳米生物力学仪器,例如可植入的生物传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号