...
首页> 外文期刊>International Journal of Multiphase Flow >Multiscale simulations and experiments on water jet atomization
【24h】

Multiscale simulations and experiments on water jet atomization

机译:水喷射雾化的多尺度模拟与实验

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Numerical simulation of primary atomization at high Reynolds number is still a challenging problem. In this work a multiscale approach for the numerical simulation of liquid jet primary atomization is applied, using an Eulerian-Lagrangian coupling. In this approach, an Eulerian volume of fluid (VOF) method, where the Reynolds stresses are closed by a Reynolds stress model is applied to model the global spreading of the liquid jet. The formation of the micro-scale droplets, which are usually smaller than the grid spacing in the computational domain, is modelled by an energy-based sub-grid model. Where the disruptive forces (turbulence and surface pressure) of turbulent eddies near the surface of the jet overcome the capillary forces, droplets are released with the local properties of the corresponding eddies. The dynamics of the generated droplets are modelled using Lagrangian particle tracking (LPT). A numerical coupling between the Eulerian and Lagrangian frames is then established via source terms in conservation equations. As a follow-up study to our investigation in Saeedipour et al. (2016a), the present paper aims at modelling drop formation from liquid jets at high Reynolds numbers in the atomization regime and validating the simulation results against in-house experiments. For this purpose, phase-Doppler anemometry (PDA) was used to measure the droplet size and velocity distributions in sprays produced by water jet breakup at different Reynolds numbers in the atomization regime. The spray properties, such as droplet size spectra, local and global Sauter-mean drop sizes and velocity distributions obtained from the simulations are compared with experiment at various locations with very good agreement. (C) 2017 Elsevier Ltd. All rights reserved.
机译:高雷诺数的主要雾化数值模拟仍然是一个具有挑战性的问题。在这项工作中,使用Eulerian-Lagrangian耦合来应用用于数值模拟液喷射原雾化的多尺度方法。在这种方法中,返回雷诺应力封闭的流体(VOF)方法的欧拉·体积,用于模拟液体射流的全局扩散。通常由计算域中的网格间隔小的微尺度液滴的形成由基于能量的子网模型建模。在射流表面附近的湍流涡流的破坏力(湍流和表面压力)克服毛细力,液滴与相应漩涡的局部性质释放。使用拉格朗日粒子跟踪(LPT)建模生成液滴的动态。然后通过保护方程中的源术语建立欧拉和拉格朗日帧之间的数值耦合。作为我们在Saeedipour等人的调查的后续研究。 (2016A),本文旨在从雾化制度中的高雷诺数的液体喷射模拟,并验证对内部实验的仿真结果。为此目的,相位多普勒式风皮测定法(PDA)用于测量雾化制度在不同雷诺数的水射流分解产生的喷雾中的液滴尺寸和速度分布。将喷射性能,例如液滴尺寸光谱,局部和全球燃烧器 - 平均下降尺寸和从模拟中获得的速度分布与各个位置的实验进行比较,非常良好的一致性。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号