首页> 外文期刊>International Journal of Greenhouse Gas Control >CO2 flow through a fractured rock volume: Insights from field data, 3D fractures representation and fluid flow modeling
【24h】

CO2 flow through a fractured rock volume: Insights from field data, 3D fractures representation and fluid flow modeling

机译:CO2流过骨折岩石体积:现场数据的见解,3D裂缝表示和流体流动模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Carbon capture and storage (CCS) projects require an accurate evaluation of the sealing potential of faults and highly fractured zones to minimize the potential for CO2 leakage. A study on the control exerted by fracture and fault networks on fluid flow, and in particular on CO2 leakage, should be based upon a representation of discrete fracture networks (DFN) that is as close as possible to that observed in the field. The present research integrates field work analysis, digital data representation, and fluid flow modeling to build a discrete fracture network (defined here as an Analogue Model; AM) that preserves the field-observed fracture geometry and relative proportion of the associated petrophysical parameters (aperture, length, direction and dip). Our study area is an outcrop in the caldera of Latera (Central Italy) where CO2 is naturally released and gas discharge in the atmosphere can be directly observed. We then compare the AM results to those generated by inputting the same fracture parameters into commercial DFN models. Our results highlight that these latter generally underestimate permeability values (by about two orders of magnitude) and hide fault-related anisotropies observed in the field, which instead are very well defined by the AM. The models were applied to a study site in the Latera caldera (Central Italy), where geologically produced CO2 leaks to the atmosphere along an exposed fault, and to simulate gas release through a fractured reservoir. Simulated leakage correlates well with field measurements that show CO2 spot anomalies at fault and fracture intersections and indicate how gas migration pathways are controlled by discontinuity permeability, complex fracture orientations, and fracture positions within the analyzed rock volume
机译:碳捕获和储存(CCS)项目需要准确评估故障的密封潜力和高度骨折区域,以最大限度地减少二氧化碳泄漏的可能性。对裂缝和故障网络施加的控制的研究应基于离散断裂网络(DFN)的表示,其尽可能接近该领域。本研究集成了现场工作分析,数字数据表示和流体流模型,以构建离散裂缝网络(这里定义为模拟模型; AM),其保留了现场观察到的裂缝几何形状和相关岩石物理参数的相对比例(孔径,长度,方向和倾角)。我们的研究区是在左右的Caldera(意大利中部)的露头,其中CO2自然释放,并且可以直接观察到大气中的气体放电。然后,我们将AM结果与通过将与商业DFN模型输入相同的裂缝参数生成的结果进行比较。我们的结果强调,这些后者通常低估渗透率值(大约两个数量级)并隐藏在该领域中观察到的故障相关的各向同性,而是由AM非常好。该模型应用于Skatera Caldera(意大利中部)的研究现场,其中地质生产的CO2沿着暴露的故障泄漏到大气中,并通过裂缝储存器模拟气体释放。模拟泄漏与现场测量相比,在故障和断裂交叉处显示CO2点异常,并指出气体迁移途径如何通过不连续性渗透率,复杂的裂缝取向和分析的岩石体积内的断裂位置控制

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号