首页> 外文期刊>International Journal of Greenhouse Gas Control >Inferring CO2 saturation from synthetic surface seismic and downhole monitoring data using machine learning for leakage detection at CO2 sequestration sites
【24h】

Inferring CO2 saturation from synthetic surface seismic and downhole monitoring data using machine learning for leakage detection at CO2 sequestration sites

机译:使用机器学习在CO2封存网站上使用机器学习推断使用合成表面地震和井下监测数据的CO2饱和度

获取原文
获取原文并翻译 | 示例
       

摘要

Inferring CO2 saturation from seismic data is important when seismic methods are applied at CO2 sequestration sites for verification and accounting purposes, such as verifying the total injected CO2 volume, comparing with model predictions for concordance evaluation, tracking the migration of CO2 plume, and detecting possible leakage from the storage reservoir. In this work, we infer CO2 saturation levels at three depths from simulated surface seismic, downhole pressure and total dissolved solids (TDS) data using machine learning (ML) methods. The simulated monitoring data are based on 6000 numerical multi-phase flow simulations of hypothetical wellbore CO2 and brine leakage from a legacy well into shallow aquifers at a model CO2 storage site. We conduct rock physics modeling to estimate changes in seismic velocity due to the simulated CO2 and brine leakage at each time step in the flow simulation outputs, resulting in 120,000 forward seismic velocity models. 2D finite-difference acoustic wave modeling is performed for each velocity model to generate synthetic shot gathers, along a sparse 2D seismic line with only 5 shots and 40 receivers. We extract 6 time-lapse seismic attribute anomalies from each trace in the time window relevant to each geologic layer, and use the seismic features, together with downhole pore pressure, TDS features to train the machine learning algorithms. The impact of seismic noise on the performance of the trained machine learning models has also been investigated. Inferred CO2 saturations from the trained classifiers are in good agreement with observations. Direct pressure and TDS measurements from downhole monitoring can increase the accuracy of the inferred CO2 saturation class from the forward modeled 2D surface seismic data. Our ML workflow represents a promising way to combine measurements from multiple monitoring techniques, together with seismic monitoring to achieve more accurate seismic quantitative interpretation.
机译:当在CO2螯合位点应用地震方法施加地震方法以进行验证和核算目的时,推断二氧化碳饱和度是重要的,例如验证整体注入的CO2体积,与用于相应评估的模型预测相比,跟踪CO2羽流的迁移,以及检测可能的迁移储存水库泄漏。在这项工作中,我们使用机器学习(ML)方法从模拟表面地震,井下压力和总溶解固体(TDS)数据的三个深度以三个深度推断CO2饱和水平。模拟监测数据基于6000个假想井筒CO2的数值多相流模拟,并且在模型CO2存储场地的遗留过程中从遗留到浅含水层的盐水泄漏。我们对流动模拟输出中的模拟CO2和盐水泄漏引起的岩石物理建模以估计由于模拟的CO2和盐水泄漏而导致120,000个前进地震速度模型。对于每个速度模型执行2D有限差异声波建模,以产生合成射击射击,沿着稀疏的2D地震线,仅具有5次射门和40个接收器。我们在与每个地质层相关的时间窗口中提取6次延时的地震属性异常,并使用地震特征以及井下孔隙压力,TDS功能培训机器学习算法。还研究了地震噪声对培训的机器学习模型性能的影响。从训练有素的分类器推断CO 2饱和与观察结果吻合良好。从井下监测的直接压力和TDS测量可以从前向模型的2D表面地震数据增加推断的CO2饱和类的准确性。我们的ML工作流代表了将来自多种监测技术的测量结果结合在一起的有希望的方法,以及地震监测,以实现更准确的地震定量解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号