首页> 外文期刊>International journal of computational methods >Discrete Particle Methods for Simulating Quasi-Static Load and Hypervelocity Impact Phenomena
【24h】

Discrete Particle Methods for Simulating Quasi-Static Load and Hypervelocity Impact Phenomena

机译:用于模拟准静态载荷和超胶质影响现象的离散颗粒方法

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, we introduce a mesh-free computational model for the simulation of high-speed impact phenomena. Within the framework of particle dynamics simulations we model a macroscopic solid ceramic tile as a network of overlapping discrete particles of microscopic size. Using potentials of the Lennard–Jones type, we integrate the classical Newtonian equations of motion and perform uni-axial, quasi-static load simulations to customize our three model parameters to the typical tensile strength, Young’s modulus and the compressive strength of a ceramic. Subsequently we perform shock load simulations in a standard experimental setup, the edge-on impact (EOI) configuration. Our obtained results concerning crack initiation and propagation through the material agree well with corresponding high-speed EOI experiments with Aluminum Oxinitride (AlON), Aluminum Oxide (Al2O3) and Silicon Carbide (SiC), performed at the Fraunhofer Ernst-Mach-Institute (EMI). Additionally, we present initial simulation results where we use our particle–based model to simulate a second type of high-speed impact experiments where an accelerated sphere strikes a thin aluminum plate. Such experiments are done at our institute to investigate the debris clouds arising from such impacts, which constitute a miniature model version of a generic satellite structure that is hit by debris in the earth’s orbit. Our findings are that a discrete particle based method leads to very stable, energy-conserving simulations of high–speed impact scenarios. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.
机译:在本文中,我们介绍了一种用于模拟高速冲击现象的网无轨电算模型。在粒子动力学模拟的框架内,我们将宏观固体陶瓷砖模型作为微观粒度的重叠离散颗粒的网络。使用Lennard-Jones类型的潜力,我们整合了典型的牛顿运动方程,进行了单轴,准静载模拟,以定制我们三个模型参数,以定制典型的拉伸强度,杨氏模量和陶瓷的抗压强度。随后,我们在标准实验设置中执行冲击载仿真,边缘冲击(EOI)配置。我们获得的裂纹引发和通过材料繁殖的结果良好地与在Fraunhofer Ernst-Mach-Institute(EMI )。另外,我们呈现初始仿真结果,在那里我们使用基于粒子的模型来模拟第二种类型的高速冲击实验,其中加速的球体撞击薄铝板。这些实验是在我们的研究所完成的,以调查来自这种影响所产生的碎片云,这构成了由地球轨道碎片击中的通用卫星结构的微型模型版本。我们的研究结果是,基于离散的粒子的方法导致高速影响方案的非常稳定,节能模拟。我们所选择的相互作用模型在速度范围内尤其良好地工作,其中局部应力引起的局部应力显着超过最终材料强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号