...
首页> 外文期刊>International Journal of Control, Automation, and Systems >Design of the PID Controller for Hydro-turbines Based on Optimization Algorithms
【24h】

Design of the PID Controller for Hydro-turbines Based on Optimization Algorithms

机译:基于优化算法的水轮机PID控制器设计

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, multiple objective particle swarm optimization (MOPSO), genetic algorithm, bees, and reinforcement learning (RL) are used to calculate the rise time (tr), integral square-error, integral of time-multiplied-squared-error, integral absolute error, and integral of time multiplied by absolute error of the system transfer function and then we use a fuzzy algorithm on MOPSO, GA, bees, and RL based on the frequency sensitivity margin of a water turbine governor to optimize the proportional gain (kp) and integral gain (ki) and calculate the relative collapsing frequency response values. The MOPSO algorithm returned the optimal result. The radial basis function (RBF) neural network curve is obtained from the MOPSO algorithm with three variables (i.e., kp, ki, kd = 0.6 and grid frequency deviations values), and finally we identify and predict three variable values near the RBF neural network curve through deep learning. The result of the grid frequency deviation is close to 0, and the gain response time is better for damping the frequency oscillations in different operating conditions.
机译:在本研究中,多目标粒子群优化(MOPSO),遗传算法,蜜蜂和加强学习(RL)用于计算上升时间(TR),积分方误差,时间乘以平方误差的积分,积分绝对误差,并且通过系统传输功能的绝对误差乘以积分绝对误差,然后我们基于水轮机调速器的频率灵敏度裕度在MOPSO,GA,BEE和RL上使用模糊算法,以优化比例增益( KP)和积分增益(ki)并计算相对折叠频率响应值。 MOPSO算法返回最佳结果。从带有三个变量的MOPSO算法(即KP,ki,Kd = 0.6和网格频率偏差值)获得径向基函数(RBF)神经网络曲线,最后我们识别并预测RBF神经网络附近的三个可变值通过深入学习曲线。电网频率偏差的结果接近0,并且增益响应时间更好地在不同的操作条件下阻尼频率振荡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号