首页> 外文期刊>International journal of applied mechanics >Three Dimensional Radiative Effects in Passive Millimeter/Sub-Millimeter All-sky Observations
【24h】

Three Dimensional Radiative Effects in Passive Millimeter/Sub-Millimeter All-sky Observations

机译:无源毫米/亚毫米全天观测中的三维辐射效应

获取原文
获取原文并翻译 | 示例
       

摘要

This study was conducted to quantify the errors prompted by neglecting three-dimensional (3D) effects, i.e., beam-filling and horizontal photon transport effects, at millimeter/sub-millimeter wavelengths. This paper gives an overview of the 3D effects that impact ice cloud retrievals of both current and proposed (Ice Cloud Imager) satellite instruments operating at frequencies of approximate to 186.3 and approximate to 668 GHz. The 3D synthetic scenes were generated from two-dimensional (2D) CloudSat (Cloud Satellite) observations over the tropics and mid-latitudes using a stochastic approach. By means of the Atmospheric Radiative Transfer Simulator (ARTS), three radiative transfer simulations were carried out: one 3D, one independent beam approximation (IBA), and a one-dimensional (1D). The comparison between the 3D and IBA simulations revealed a small horizontal photon transport effect, with IBA simulations introducing mostly random errors and a slight overestimation (below 1 K). However, performing 1D radiative transfer simulations results in a significant beam-filling effect that increases primarily with frequency, and secondly, with footprint size. For a sensor footprint size of 15 km, the errors induced by neglecting domain heterogeneities yield root mean square errors of up to approximate to 4 K and approximate to 13 K at 186.3 GHz and 668 GHz, respectively. However, an instrument operating at the same frequencies, but with a much smaller footprint size, i.e., 6 km, is subject to smaller uncertainties, with a root mean square error of approximate to 2 K at 186.3 GHz and approximate to 7.1 K at 668 GHz. When designing future satellite instruments, this effect of footprint size on modeling uncertainties should be considered in the overall error budget. The smallest possible footprint size should be a priority for future sub-millimeter observations in light of these results.
机译:进行该研究以量化通过忽略三维(3D)效应,即光束填充和水平光子传输效应,以毫米/亚毫米波长来量化误差。本文概述了影响当前和建议(冰云成像器)卫星仪器的冰云检索的3D效果概述,该卫星仪器在近似为186.3的频率下运行,并近似于668 GHz。使用随机方法,从二维(2D)CloudSat(云卫星)观察到的二维(2D)Cloudsat(云卫星)观察中产生3D合成场景。通过大气辐射转移模拟器(ART),进行三个辐射传输模拟:一个3D,一个独立的光束近似(IBA)和一维(1D)。 3D和IBA模拟之间的比较显示了一种小的水平光子传输效果,IBA模拟主要是随机误差和轻微高估(低于1 k)。然而,执行1D辐射转移模拟导致显着的光束填充效果,其主要用频率增加,其次具有占地面积。对于15km的传感器占地面积,忽略域异质性引起的误差屈服于近似为4k的根均方误差,分别在186.3 GHz和668GHz的13 k接近13 k。然而,在相同频率下操作的仪器,但具有更小的占地面积,即6公里,较小的不确定性,具有近似为2 k的根均线误差为186.3 GHz,并在668处近似到7.1k GHz。在设计未来的卫星仪器时,应在整体错误预算中考虑这种占地面积对建模不确定性的影响。鉴于这些结果,最小可能的占用尺寸应优先考虑未来亚毫米观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号